精英家教网 > 高中数学 > 题目详情
15.命题p:函数y=x+$\frac{2}{x}$在[1,4]上的值域为[3,$\frac{9}{2}$],命题q:${log}_{\frac{1}{2}}$(a+1)>${log}_{\frac{1}{2}}$a(a>0),下列命题中,真命题的是(  )
A.p∧qB.p∨qC.p∧(¬q)D.p∨(¬q)

分析 对于命题p,利用导数研究函数的单调性极值与最值即可得出;对于命题q:利用对数函数的单调性即可判断出真假.

解答 解:命题p:函数f(x)=x+$\frac{2}{x}$,f′(x)=1-$\frac{2}{{x}^{2}}$=$\frac{{x}^{2}-2}{{x}^{2}}$=$\frac{(x+\sqrt{2})(x-\sqrt{2})}{{x}^{2}}$,当x∈$[1,\sqrt{2})$时,f′(x)<0,此时函数f(x)单调递减;当x∈$(\sqrt{2},4]$时,f′(x)>0,此时函数f(x)单调递增.∴当x=$\sqrt{2}$时,函数f(x)取得极小值即最小值,f$(\sqrt{2})$=$2\sqrt{2}$;而f(1)=3,f(4)=4+$\frac{1}{2}$=$\frac{9}{2}$.∴函数f(x)在[1,4]上的值域为[2$\sqrt{2}$,$\frac{9}{2}$],因此是假命题.
命题q:∵a+1>a,∴${log}_{\frac{1}{2}}$(a+1)<${log}_{\frac{1}{2}}$a(a>0),因此是假命题.
由上面可知:p是假命题,q是假命题,¬q是真命题.
∴P∨¬q是真命题,
故选:D.

点评 本题考查了利用导数研究函数的单调性极值与最值、对数函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图,在四边形ABCD中,∠BAD=90°,∠ADC=120°,AD=DC=2,AB=4,动点M在△BCD内(含边界)运动,设$\overrightarrow{AM}$=$λ\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λ+μ的取值范围是[1,$\frac{\sqrt{3}}{4}+\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a>1,b<1,求证:a+b>1+ab.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l1与l2:x+y-1=0平行,且l1与l2的距离为$\sqrt{2}$,求l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{AB}$=(1,2),$\overrightarrow{OB}$=(0,1),则下列各点中在直线AB上的是(  )
A.(0,3)B.(1,1)C.(2,4)D.(2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,在等腰直角三角形ABD中,∠BAD=90°,且等腰直角三角形ABD与等边三角形CBD所在平面垂直,E为BC的中点,则AE与平面BCD所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若关于x的方程|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|-kx-1=0有五个互不相等的实根,则k的取值范围是(  )
A.(-$\frac{1}{4}$,$\frac{1}{4}$)B.(-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)C.(-∞,-$\frac{1}{8}$)∪($\frac{1}{8}$,+∞)D.(-$\frac{1}{8}$,0)∪(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C1:x2=4y的焦点是椭圆C2短轴B1B2的一个端点B1,而双曲线C2:$\frac{{x}^{2}}{2}$-y2=1与椭圆C2共焦点.
(1)求椭圆C2的标准方程;
(2)过(0,-2)的直线l与椭圆C2交于P、Q两点,若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,试在抛物线上求一点M,使点M到直线l的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平行四边形ABCD中,E,G分别是BC,DC上的点且$\overrightarrow{BC}$=3$\overrightarrow{BE}$,$\overrightarrow{CD}$=3$\overrightarrow{CG}$,DE与BG交于点O.
(1)求|$\overrightarrow{OE}$|:|$\overrightarrow{DE}$|;
(2)若平行四边形ABCD的面积为21,求△BOC的面积.

查看答案和解析>>

同步练习册答案