【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.
(1)求证:EF∥平面PAD;
(2)求三棱锥B﹣EFC的体积;
(3)求二面角P﹣EC﹣D的正切值.
【答案】
(1)证明:取PD中点G,连结GF、AG,
∵GF为△PDC的中位线,∴GF∥CD且 ,
又AE∥CD且 ,∴GF∥AE且GF=AE,
∴EFGA是平行四边形,则EF∥AG,
又EF面PAD,AG面PAD,
∴EF∥面PAD
(2)解:取AD中点O,连结PO,
∵面PAD⊥面ABCD,△PAD为正三角形,∴PO⊥面ABCD,且 ,
又PC为面ABCD斜线,F为PC中点,∴F到面ABCD距离 ,
故
(3)解:连OB交CE于M,可得Rt△EBC≌Rt△OAB,
∴∠MEB=∠AOB,则∠MEB+∠MBE=90°,即OM⊥EC.
连PM,又由(2)知PO⊥EC,可得EC⊥平面POM,则PM⊥EC,
即∠PMO是二面角P﹣EC﹣D的平面角,
在Rt△EBC中, ,∴ ,
∴ ,即二面角P﹣EC﹣D的正切值为
【解析】(1)取PD中点G,连结GF、AG,由三角形中位线定理可得GF∥CD且 ,再由已知可得AE∥CD且 ,从而得到EFGA是平行四边形,则EF∥AG,然后利用线面平行的判定可得EF∥面PAD;(2)取AD中点O,连结PO,由面面垂直的性质可得PO⊥面ABCD,且 ,求出F到面ABCD距离 ,然后利用等积法求得三棱锥B﹣EFC的体积;(3)连OB交CE于M,可得Rt△EBC≌Rt△OAB,得到OM⊥EC.进一步证得PM⊥EC,可得∠PMO是二面角P﹣EC﹣D的平面角,然后求解直角三角形可得二面角P﹣EC﹣D的正切值.
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是矩形, 平面, 是等腰三角形, , 是的一个三等分点(靠近点),的延长线与的延长线交于点,连接.
(1)求证: ;
(2)求证:在线段上可以分别找到两点, ,使得直线平面,并分别求出此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心在直线x﹣2y=0上.
(1)若圆C与y轴的正半轴相切,且该圆截x轴所得弦的长为2 ,求圆C的标准方程;
(2)在(1)的条件下,直线l:y=﹣2x+b与圆C交于两点A,B,若以AB为直径的圆过坐标原点O,求实数b的值;
(3)已知点N(0,3),圆C的半径为3,且圆心C在第一象限,若圆C上存在点M,使MN=2MO(O为坐标原点),求圆心C的纵坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x , |(x≥0),图象如图所示.函数g(x)=﹣x2﹣2x+a,(x<0),其图象经过点A(﹣1,2).
(1)求实数a的值,并在所给直角坐标系xOy内做出函数g(x)的图象;
(2)设h(x)= ,根据h(x)的图象写出其单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABC﹣A1B1C1中,AB=AA1=2,∠ABC=90°,点E、F分别是棱AB、BB1的中点,当二面角C1﹣AA1﹣B为45o时,直线EF和BC1所成的角为( )
A.45o
B.60o
C.90o
D.120o
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(2,1)
(1)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程;
(2)若直线l与x正半轴、y正半轴分别交于A,B两点,且△ABO的面积为4,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com