精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.
(1)求证:EF∥平面PAD;
(2)求三棱锥B﹣EFC的体积;
(3)求二面角P﹣EC﹣D的正切值.

【答案】
(1)证明:取PD中点G,连结GF、AG,

∵GF为△PDC的中位线,∴GF∥CD且

又AE∥CD且 ,∴GF∥AE且GF=AE,

∴EFGA是平行四边形,则EF∥AG,

又EF面PAD,AG面PAD,

∴EF∥面PAD


(2)解:取AD中点O,连结PO,

∵面PAD⊥面ABCD,△PAD为正三角形,∴PO⊥面ABCD,且

又PC为面ABCD斜线,F为PC中点,∴F到面ABCD距离


(3)解:连OB交CE于M,可得Rt△EBC≌Rt△OAB,

∴∠MEB=∠AOB,则∠MEB+∠MBE=90°,即OM⊥EC.

连PM,又由(2)知PO⊥EC,可得EC⊥平面POM,则PM⊥EC,

即∠PMO是二面角P﹣EC﹣D的平面角,

在Rt△EBC中, ,∴

,即二面角P﹣EC﹣D的正切值为


【解析】(1)取PD中点G,连结GF、AG,由三角形中位线定理可得GF∥CD且 ,再由已知可得AE∥CD且 ,从而得到EFGA是平行四边形,则EF∥AG,然后利用线面平行的判定可得EF∥面PAD;(2)取AD中点O,连结PO,由面面垂直的性质可得PO⊥面ABCD,且 ,求出F到面ABCD距离 ,然后利用等积法求得三棱锥B﹣EFC的体积;(3)连OB交CE于M,可得Rt△EBC≌Rt△OAB,得到OM⊥EC.进一步证得PM⊥EC,可得∠PMO是二面角P﹣EC﹣D的平面角,然后求解直角三角形可得二面角P﹣EC﹣D的正切值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 x﹣1(x∈R).
(1)求函数f(x)的单调递减区间;
(2)若f(x0)= ,求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是矩形, 平面 是等腰三角形, 的一个三等分点(靠近点),的延长线与的延长线交于点,连接

(1)求证:

(2)求证:在线段上可以分别找到两点 ,使得直线平面,并分别求出此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线x﹣2y=0上.
(1)若圆C与y轴的正半轴相切,且该圆截x轴所得弦的长为2 ,求圆C的标准方程;
(2)在(1)的条件下,直线l:y=﹣2x+b与圆C交于两点A,B,若以AB为直径的圆过坐标原点O,求实数b的值;
(3)已知点N(0,3),圆C的半径为3,且圆心C在第一象限,若圆C上存在点M,使MN=2MO(O为坐标原点),求圆心C的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x , |(x≥0),图象如图所示.函数g(x)=﹣x2﹣2x+a,(x<0),其图象经过点A(﹣1,2).

(1)求实数a的值,并在所给直角坐标系xOy内做出函数g(x)的图象;
(2)设h(x)= ,根据h(x)的图象写出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的夹角为60°, ,当实数k为何值时,
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱ABC﹣A1B1C1中,AB=AA1=2,∠ABC=90°,点E、F分别是棱AB、BB1的中点,当二面角C1﹣AA1﹣B为45o时,直线EF和BC1所成的角为(
A.45o
B.60o
C.90o
D.120o

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(2,1)
(1)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程;
(2)若直线l与x正半轴、y正半轴分别交于A,B两点,且△ABO的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,线段AB在平面α内,线段BD⊥AB,线段AC⊥α,且AB= ,AC=BD=12,CD= ,求线段BD与平面α所成的角.

查看答案和解析>>

同步练习册答案