精英家教网 > 高中数学 > 题目详情
1.在△ABC中,已知a=1,b=$\sqrt{3}$,A=30°,则sinC的值为(  )
A.$\frac{1}{2}$或1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

分析 由余弦定理可得:12=c2+$(\sqrt{3})^{2}$-2$\sqrt{3}$ccos30°,解得c.再利用正弦定理即可得出.

解答 解:由余弦定理可得:12=c2+$(\sqrt{3})^{2}$-2$\sqrt{3}$ccos30°,
化为:c2-3c+2=0,
解得c=1或2.
由正弦定理可得:$\frac{1}{sin3{0}^{°}}$=$\frac{c}{sinC}$,化为:sinC=$\frac{1}{2}$c,
∴sinC=$\frac{1}{2}$或1.
故选:A.

点评 本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知sinx=-$\frac{1}{3}$,且-$\frac{π}{2}$<x<$\frac{π}{2}$,则tan($\frac{π}{2}$+x)=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若$x=\frac{π}{4}$是方程2sin(x+α)=1(α∈(0,2π))的解,则α=$\frac{7π}{12}$或$\frac{23π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有下列关系:其中有相关关系的是(  )
①人的年龄与他(她)拥有的财富之间的关系;
②曲线上的点与该点的坐标之间的关系;
③苹果的产量与气候之间的关系;
④森林中的同一种树木,其横断面直径与高度之间的关系.
A.①②③B.①②C.①③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}满足a1=3,an+1=an2-2nan+2(n=1,2,3,…).
(1)求a2,a3,a4的值,并猜想数列{an}的通项公式(不需证明);
(2)记Sn为数列{an}的前n项和,试求使得Sn<2n成立的最小正整数n,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}的前n项和为Sn,若4S1,3S2,2S3成等差数列,且S4=15.
(1)求数列{an}的通项公式;
(2)若Sn≤127,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$,则方程f2(x)-3f(x)+2=0的根的个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C的两个焦点分别为${F_1}({-2\sqrt{2},0})$,${F_2}({2\sqrt{2},0})$,长轴长为6.
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,试探究原点O是否在以线段AB为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{e}^{x}}{{x}^{2}}$-$\frac{2k-1}{x}$,g(x)=$\frac{1}{x}$+klnx,(k为常数,e=2.71828…)
(1)记h(x)=f(x)-g(x),若函数h(x),在(0,2),内存在两个极值点,求k的取值范围;
(2)若在区间(0,e]内至少存在一个数x0,使得g(x0)<0成立,求k的取值范围.

查看答案和解析>>

同步练习册答案