精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$,则方程f2(x)-3f(x)+2=0的根的个数是(  )
A.3B.4C.5D.6

分析 求解方程f2(x)-3f(x)+2=0,得f(x)=1或f(x)=2,画出函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$的图象,数形结合得答案.

解答 解:由f2(x)-3f(x)+2=0,得f(x)=1或f(x)=2.
画出函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}-2x+1,x>0}\end{array}\right.$的图象如图:

由图可知,方程f(x)=1有1根,方程f(x)=2有2根.
∴方程f2(x)-3f(x)+2=0的根的个数是3.
故选:A.

点评 本题考查根的存在性及根的个数判断,考查数学转化思想方法与数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=2x3+3ax2+3bx在x=1及x=2时取得极值.
(1)求a、b的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在区间[0,4]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了得到$y=cos({\frac{1}{2}x+\frac{π}{6}})$的图象,只需将y=cos$\frac{1}{2}$x的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{3}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知a=1,b=$\sqrt{3}$,A=30°,则sinC的值为(  )
A.$\frac{1}{2}$或1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=log3(x2-4x+m).
(1)若f(x)的定义域为R,求实数m的取值范围;
(2)若f(x)的图象过点(0,1),解不等式:f(x)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.通过随机询问某书店110名读者对莫言的作品是否满意,得到如下的列联表:
总计
满意503080
不满意102030
 总计6050110
(1)从这50名女读者中按对莫言的作品是否满意采取分层抽样,抽取一个容量为5的样本,则样本中满意与不满意的女读者各有多少名?
P(K2≥k00.050.0250.01
k03.8415.0246.635
(2)由以上列联表,问有多大把握认为“读者性别与对莫言作品的满意度”有关?${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$C:\frac{x^2}{16}+\frac{y^2}{8}=1$的左、右焦点分别为F1、F2,过点F1的直线l交椭圆C于A、B两点,则△ABF2的周长为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点(1,4)且与直线3x+2y=0平行的直线的方程为3x+2y-11=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.二项式(a+b)2n的展开式的项数是(  )
A.2nB.2n+1C.2n-1D.2(n+1)

查看答案和解析>>

同步练习册答案