精英家教网 > 高中数学 > 题目详情
1.已知角x的终边与单位圆的交点的坐标为P(a,b),若a=$\frac{1}{2}$,①求b,②求tan(2x-$\frac{π}{4}$).

分析 ①由条件利用单位圆的性质求得b的值.
②利用任意角的三角函数的定义求得tanx的值,再利用二倍角的正切公式求得tan2x的值,再利用两角和差的正切公式求得tan(2x-$\frac{π}{4}$)的值.

解答 解:①∵角x的终边与单位圆的交点的坐标为P($\frac{1}{2}$,b),∴${(\frac{1}{2})}^{2}$+b2=1,求得b=±$\frac{\sqrt{3}}{2}$.
②tanx=$\frac{b}{a}$=±$\sqrt{3}$,当tanx=$\sqrt{3}$,tan2x=$\frac{2tanx}{1{-tan}^{2}x}$=-$\sqrt{3}$,
tan(2x-$\frac{π}{4}$)=$\frac{tan2x-1}{1+tan2x}$=$\frac{-\sqrt{3}-1}{1-\sqrt{3}}$=2+$\sqrt{3}$.
当tanx=-$\sqrt{3}$,tan2x=$\frac{2tanx}{1{-tan}^{2}x}$=$\sqrt{3}$,
tan(2x-$\frac{π}{4}$)=$\frac{tan2x-1}{1+tan2x}$=$\frac{\sqrt{3}-1}{1+\sqrt{3}}$=2-$\sqrt{3}$.

点评 本题主要考查任意角的三角函数的定义,二倍角的正切公式、两角和差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知点P1(x0,y0)为双曲线$\frac{{x}^{2}}{8{b}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b为正常数)上任一点,F2为双曲线的右焦点,过P作直线x=$\frac{8b}{3}$的垂线,垂足为A,连接F2A并延长交y轴于P2
(1)求线段P1P2的中点P的轨迹E的方程;
(2)设轨迹E与x轴交于B、D两点,在E上任取一点Q(x1,y1)(y1≠0),直线QB,QD分别交y轴于M,N两点.求证:以MN为直径的圆过两定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2sin2x+2$\sqrt{3}$sinxcosx-1的图象关于(φ,0)对称,则φ的值可以是(  )
A.$-\frac{π}{6}$B.$\frac{π}{6}$C.$-\frac{π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若向量$\overrightarrow a$=(1,2),$\overrightarrow{b}$=(1,-1),则2$\overrightarrow a$+$\overrightarrow{b}$与$\overrightarrow a$-$\overrightarrow{b}$的夹角等于(  )
A.-$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出以下命题:
(1)若A${\;}_{n}^{3}$=6C${\;}_{n}^{4}$,则n的值为7;
(2)若${∫}_{b}^{a}$f(x)dx>0,则f(x)>0;
(3)导数为零的点一定是极值点;
(4)若z∈C,且|z+2-2i|=1,则|z|的最小值是2$\sqrt{2}$-1;
其中正确的命题序号为(1)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,内角A,B,C的对边分别为a、b、c,且a、b、c成等比数列,a+c=3,tanB=$\frac{{\sqrt{7}}}{3}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{7}{2}$C.$\frac{5}{2}$D.$\frac{{\sqrt{7}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tanx=2,求下列各式的值:
(1)$\frac{cosx+sinx}{cosx-sinx}$;     
(2)cos2x-sin2x;      
(3)3sinxcosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是正态分布N(0,1)的正态曲线图,下面4个式子中(注:Φ(a)=P(X≤a)),等于图中阴影部分的面积的个数为(  )
①$\frac{1}{2}-$Φ(-a);
②1-Φ(a);
③Φ(a)-$\frac{1}{2}$;
④$\frac{1}{2}-Φ(a)$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若函数f(x)=x2+ax+b对任意正整数n,有f(n)<f(n+1),则a的取值范围是多少?

查看答案和解析>>

同步练习册答案