精英家教网 > 高中数学 > 题目详情
9.已知U={1,2,3,4},A={1,3},求∁UA.

分析 直接利用补集的运算法则求解即可.

解答 解:U={1,2,3,4},A={1,3},
UA={2,4}.
故答案为:{2,4}

点评 本题考查补集的运算法则的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\ x+1,x≤0\end{array}$.则f(f($\frac{1}{4}$))=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|x2<1},B={y|y=|x|},则A∩B=(  )
A.B.(0,1)C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中以原点O为极点以x轴为正半轴为极轴,与直角坐标系xOy取相同的长度单位建立极坐标系,已知曲线C的极坐标方程为ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0.
(Ⅰ)求曲线C的普通方程;
(Ⅱ)设点P(x,y)是曲线C上任意一点,求xy的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a>0,b≥0,c≥0且$\left\{\begin{array}{l}{b+2c≥2a}\\{b+4c≤4a}\\{b-c≤2a}\end{array}\right.$,则$\frac{c+a}{b+a}$的取值范围是[$\frac{1}{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的首项为2,前n项和为Sn,且$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$(n∈N*).
(1)求a2的值;
(2)设bn=$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$,求数列{bn}的通项公式;
(3)若am,ap,ar(m,p,r∈N*,m<p<r)成等比数列,试比较p2与mr的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合P={y|y≥0},且P⊆Q,则集合Q不可能是  (  )
A.{y|y=x2-1}B.{y|y=2x}C.{y|y=lgx}D.{y|y=x2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,Sn=2an-2,(n≥1,n∈N),数列{bn}中,b1=1,b2=3,2bn+1=bn+bn+2,(n≥1,n∈N)
(1)求an和bn
(2)令Tn=$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+…+$\frac{{b}_{n}}{{a}_{n}}$,是否存在正整数M使得Tn<M对一切正整数n都成立?若存在,求出M的最小值;若不存在,请说明理由.
(3)令cn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$,证明:$\frac{n}{2}$-$\frac{1}{3}$<c1+c2+…+cn<$\frac{n}{2}$,(n≥1,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若椭圆的中点在原点,一个焦点为(0,2),直线y=3x+7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

同步练习册答案