·ÖÎö £¨1£©ÔËÓÃÊýÁеÄͨÏîºÍǰnÏîºÍµÄ¹ØÏµÊ½£¬¿ÉµÃ{an}ÊÇÒÔ2Ϊ¹«±È¡¢Ê×Ïîa1=2µÄµÈ±ÈÊýÁУ¬¼´an=2n£¨n¡Ý1£¬n¡ÊN£©£¬ÔÙÓɵȲîÊýÁе͍ÒåºÍͨÏʽ¿ÉµÃbn=2n-1£»
£¨2£©ÔËÓÃÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬½áºÏµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬¿ÉµÃTn=3-$\frac{2n+3}{{2}^{n}}$£¼3£¬Óɲ»µÈʽºã³ÉÁ¢Ë¼Ïë¿ÉµÃMµÄ×îСֵΪ3£»
£¨3£©ÇóµÃcn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$=$\frac{{2}^{n}-1}{{2}^{n+1}-1}$=$\frac{1}{2}$-$\frac{1}{{2}^{n+2}-2}$£¼$\frac{1}{2}$£¬ÇÒc1+c2+¡+cn=$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{14}$+$\frac{1}{30}$+¡+$\frac{1}{{2}^{n+2}-2}$£©£¾$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{9}$+$\frac{1}{27}$+¡+$\frac{1}{{3}^{n}}$£©£¬ÔËÓò»µÈʽµÄÐÔÖʺ͵ȱÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃÖ¤£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ2an=Sn+2£¬¼´2a1=S1+2=a1+2£¬
½âµÃa1=2£¬
ÓÉSn=2an-2£¬Sn+1=2an+1-2£¬
Ïà¼õ¿ÉµÃan+1=Sn+1-Sn=2£¨an+1-an£©£¬¼´an+1=2an£¬
ÊýÁÐ{an}ÊÇÒÔ2Ϊ¹«±È¡¢Ê×Ïîa1=2µÄµÈ±ÈÊýÁУ¬
¼´an=2n£¨n¡Ý1£¬n¡ÊN£©£¬
b1=1£¬b2=3£¬2bn+1=bn+bn+2£¬
¼´bn+2-bn+1=bn+1-bn=¡=b2-b1=2£¬
¿ÉµÃÊýÁÐ{bn}ÊÇÒÔ2Ϊ¹«²î¡¢Ê×Ïîb1=1µÄµÈ²îÊýÁУ¬
¼´bn=2n-1£¨n¡ÊN*£©£»
£¨2£©Tn=$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+¡+$\frac{{b}_{n}}{{a}_{n}}$=1•$\frac{1}{2}$+3•£¨$\frac{1}{2}$£©2+5•£¨$\frac{1}{2}$£©3+¡+£¨2n-1£©•£¨$\frac{1}{2}$£©n£¬
$\frac{1}{2}$Tn=1•£¨$\frac{1}{2}$£©2+3•£¨$\frac{1}{2}$£©3+5•£¨$\frac{1}{2}$£©4+¡+£¨2n-1£©•£¨$\frac{1}{2}$£©n+1£¬
Á½Ê½Ïà¼õ¿ÉµÃ$\frac{1}{2}$Tn=$\frac{1}{2}$+2[£¨$\frac{1}{2}$£©2+£¨$\frac{1}{2}$£©3+£¨$\frac{1}{2}$£©4+¡+£¨$\frac{1}{2}$£©n]-£¨2n-1£©•£¨$\frac{1}{2}$£©n+1
=$\frac{1}{2}$+2•$\frac{\frac{1}{4}£¨1-\frac{1}{{2}^{n-1}}£©}{1-\frac{1}{2}}$-£¨2n-1£©•£¨$\frac{1}{2}$£©n+1£¬
»¯¼ò¿ÉµÃTn=3-$\frac{2n+3}{{2}^{n}}$£¬
ÓÉT1=$\frac{1}{2}$£¬Tn-Tn-1=3-$\frac{2n+3}{{2}^{n}}$-3+$\frac{2n+1}{{2}^{n-1}}$=$\frac{2n-1}{{2}^{n}}$£¾0£¬
¼´Tn£¾Tn-1£¬ÔòTnµ¥µ÷µÝÔö£¬¼´ÓÐTn¡Ê[$\frac{1}{2}$£¬3£©£¬
¼ÙÉè´æÔÚÕýÕûÊýMʹµÃTn£¼M¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬
¿ÉµÃM¡Ý3£¬¼´MµÄ×îСֵΪ3£»
£¨3£©Ö¤Ã÷£ºcn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$=$\frac{{2}^{n}-1}{{2}^{n+1}-1}$=$\frac{1}{2}$-$\frac{1}{{2}^{n+2}-2}$£¼$\frac{1}{2}$£¬
¼´ÓÐc1+c2+¡+cn£¼$\frac{n}{2}$³ÉÁ¢£»
ÓÖc1+c2+¡+cn=$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{14}$+$\frac{1}{30}$+¡+$\frac{1}{{2}^{n+2}-2}$£©
£¾$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{9}$+$\frac{1}{27}$+¡+$\frac{1}{{3}^{n}}$£©
=$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{\frac{1}{9}£¨1-\frac{1}{{3}^{n-1}}£©}{1-\frac{1}{3}}$£©
=$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{6}$-$\frac{1}{2•{3}^{n}}$£©£¾$\frac{1}{2}$n-$\frac{1}{3}$£®
×ÛÉϿɵã¬$\frac{n}{2}$-$\frac{1}{3}$£¼c1+c2+¡+cn£¼$\frac{n}{2}$£¬£¨n¡Ý1£¬n¡ÊN£©£®
µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬×¢ÒâÔËÓÃÊýÁеÄͨÏîºÍǰnÏîºÍµÄ¹ØÏµ£¬¿¼²éµÈ²îÊýÁк͵ȱÈÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½µÄÔËÓã¬ÒÔ¼°ÊýÁв»µÈʽºã³ÉÁ¢ÎÊÌâ¼°Ö¤Ã÷£¬×¢ÒâÔËÓÃÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬ÒÔ¼°²»µÈʽµÄÐÔÖÊ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬+¡Þ£© | B£® | £¨1£¬+¡Þ£© | C£® | £¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£© | D£® | R |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | -1 | C£® | $\frac{\sqrt{3}}{3}$ | D£® | -$\frac{\sqrt{3}}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com