18£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Sn=2an-2£¬£¨n¡Ý1£¬n¡ÊN£©£¬ÊýÁÐ{bn}ÖУ¬b1=1£¬b2=3£¬2bn+1=bn+bn+2£¬£¨n¡Ý1£¬n¡ÊN£©
£¨1£©ÇóanºÍbn£»
£¨2£©ÁîTn=$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+¡­+$\frac{{b}_{n}}{{a}_{n}}$£¬ÊÇ·ñ´æÔÚÕýÕûÊýMʹµÃTn£¼M¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Áîcn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$£¬Ö¤Ã÷£º$\frac{n}{2}$-$\frac{1}{3}$£¼c1+c2+¡­+cn£¼$\frac{n}{2}$£¬£¨n¡Ý1£¬n¡ÊN£©

·ÖÎö £¨1£©ÔËÓÃÊýÁеÄͨÏîºÍǰnÏîºÍµÄ¹ØÏµÊ½£¬¿ÉµÃ{an}ÊÇÒÔ2Ϊ¹«±È¡¢Ê×Ïîa1=2µÄµÈ±ÈÊýÁУ¬¼´an=2n£¨n¡Ý1£¬n¡ÊN£©£¬ÔÙÓɵȲîÊýÁе͍ÒåºÍͨÏʽ¿ÉµÃbn=2n-1£»
£¨2£©ÔËÓÃÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬½áºÏµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬¿ÉµÃTn=3-$\frac{2n+3}{{2}^{n}}$£¼3£¬Óɲ»µÈʽºã³ÉÁ¢Ë¼Ïë¿ÉµÃMµÄ×îСֵΪ3£»
£¨3£©ÇóµÃcn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$=$\frac{{2}^{n}-1}{{2}^{n+1}-1}$=$\frac{1}{2}$-$\frac{1}{{2}^{n+2}-2}$£¼$\frac{1}{2}$£¬ÇÒc1+c2+¡­+cn=$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{14}$+$\frac{1}{30}$+¡­+$\frac{1}{{2}^{n+2}-2}$£©£¾$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{9}$+$\frac{1}{27}$+¡­+$\frac{1}{{3}^{n}}$£©£¬ÔËÓò»µÈʽµÄÐÔÖʺ͵ȱÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ2an=Sn+2£¬¼´2a1=S1+2=a1+2£¬
½âµÃa1=2£¬
ÓÉSn=2an-2£¬Sn+1=2an+1-2£¬
Ïà¼õ¿ÉµÃan+1=Sn+1-Sn=2£¨an+1-an£©£¬¼´an+1=2an£¬
ÊýÁÐ{an}ÊÇÒÔ2Ϊ¹«±È¡¢Ê×Ïîa1=2µÄµÈ±ÈÊýÁУ¬
¼´an=2n£¨n¡Ý1£¬n¡ÊN£©£¬
b1=1£¬b2=3£¬2bn+1=bn+bn+2£¬
¼´bn+2-bn+1=bn+1-bn=¡­=b2-b1=2£¬
¿ÉµÃÊýÁÐ{bn}ÊÇÒÔ2Ϊ¹«²î¡¢Ê×Ïîb1=1µÄµÈ²îÊýÁУ¬
¼´bn=2n-1£¨n¡ÊN*£©£»
£¨2£©Tn=$\frac{{b}_{1}}{{a}_{1}}$+$\frac{{b}_{2}}{{a}_{2}}$+¡­+$\frac{{b}_{n}}{{a}_{n}}$=1•$\frac{1}{2}$+3•£¨$\frac{1}{2}$£©2+5•£¨$\frac{1}{2}$£©3+¡­+£¨2n-1£©•£¨$\frac{1}{2}$£©n£¬
$\frac{1}{2}$Tn=1•£¨$\frac{1}{2}$£©2+3•£¨$\frac{1}{2}$£©3+5•£¨$\frac{1}{2}$£©4+¡­+£¨2n-1£©•£¨$\frac{1}{2}$£©n+1£¬
Á½Ê½Ïà¼õ¿ÉµÃ$\frac{1}{2}$Tn=$\frac{1}{2}$+2[£¨$\frac{1}{2}$£©2+£¨$\frac{1}{2}$£©3+£¨$\frac{1}{2}$£©4+¡­+£¨$\frac{1}{2}$£©n]-£¨2n-1£©•£¨$\frac{1}{2}$£©n+1
=$\frac{1}{2}$+2•$\frac{\frac{1}{4}£¨1-\frac{1}{{2}^{n-1}}£©}{1-\frac{1}{2}}$-£¨2n-1£©•£¨$\frac{1}{2}$£©n+1£¬
»¯¼ò¿ÉµÃTn=3-$\frac{2n+3}{{2}^{n}}$£¬
ÓÉT1=$\frac{1}{2}$£¬Tn-Tn-1=3-$\frac{2n+3}{{2}^{n}}$-3+$\frac{2n+1}{{2}^{n-1}}$=$\frac{2n-1}{{2}^{n}}$£¾0£¬
¼´Tn£¾Tn-1£¬ÔòTnµ¥µ÷µÝÔö£¬¼´ÓÐTn¡Ê[$\frac{1}{2}$£¬3£©£¬
¼ÙÉè´æÔÚÕýÕûÊýMʹµÃTn£¼M¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬
¿ÉµÃM¡Ý3£¬¼´MµÄ×îСֵΪ3£»
£¨3£©Ö¤Ã÷£ºcn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$=$\frac{{2}^{n}-1}{{2}^{n+1}-1}$=$\frac{1}{2}$-$\frac{1}{{2}^{n+2}-2}$£¼$\frac{1}{2}$£¬
¼´ÓÐc1+c2+¡­+cn£¼$\frac{n}{2}$³ÉÁ¢£»
ÓÖc1+c2+¡­+cn=$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{14}$+$\frac{1}{30}$+¡­+$\frac{1}{{2}^{n+2}-2}$£©
£¾$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{9}$+$\frac{1}{27}$+¡­+$\frac{1}{{3}^{n}}$£©
=$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{\frac{1}{9}£¨1-\frac{1}{{3}^{n-1}}£©}{1-\frac{1}{3}}$£©
=$\frac{1}{2}$n-£¨$\frac{1}{6}$+$\frac{1}{6}$-$\frac{1}{2•{3}^{n}}$£©£¾$\frac{1}{2}$n-$\frac{1}{3}$£®
×ÛÉϿɵã¬$\frac{n}{2}$-$\frac{1}{3}$£¼c1+c2+¡­+cn£¼$\frac{n}{2}$£¬£¨n¡Ý1£¬n¡ÊN£©£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬×¢ÒâÔËÓÃÊýÁеÄͨÏîºÍǰnÏîºÍµÄ¹ØÏµ£¬¿¼²éµÈ²îÊýÁк͵ȱÈÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½µÄÔËÓã¬ÒÔ¼°ÊýÁв»µÈʽºã³ÉÁ¢ÎÊÌâ¼°Ö¤Ã÷£¬×¢ÒâÔËÓÃÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬ÒÔ¼°²»µÈʽµÄÐÔÖÊ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®º¯Êýy=3xµÄÖµÓòÊÇ£¨¡¡¡¡£©
A£®£¨0£¬+¡Þ£©B£®£¨1£¬+¡Þ£©C£®£¨-¡Þ£¬0£©¡È£¨0£¬+¡Þ£©D£®R

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªU={1£¬2£¬3£¬4}£¬A={1£¬3}£¬Çó∁UA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÁ½µ¥Î»ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ120¡ã£¬Èô$\overrightarrow{c}$=2$\overrightarrow{a}$-$\overrightarrow{b}$£¬$\overrightarrow{d}$=3$\overrightarrow{b}$-$\overrightarrow{a}$£¬ÊÔÇó|$\overrightarrow{c}$+$\overrightarrow{d}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a2+a3=24£®a4=54£®¹«±Èq£¾0£¬Çó£º
£¨1£©Ê×Ïîa1ºÍ¹«±Èq£»
£¨2£©¸ÃÊýÁеÄǰ6ÏîµÄºÍS6µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¼¯ºÏAµÄÔªËØÊÇÓÉ·½³Ì£¨a2-1£©x2+2£¨a+1£©x+1=0µÄʵÊý½â¹¹³É£®
£¨1£©ÈôAΪ¿Õ¼¯£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©ÈôAÊǵ¥ÔªËؼ¯£¬ÇóaµÄÖµ£»
£¨3£©ÈôAÖÐÖÁ¶àÖ»ÓÐÒ»¸öÔªËØ£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®°ë¾¶Îª4cmµÄÔ²ÖУ¬Ô²ÐĽÇΪ¦ÈµÄÉÈÐεÄÃæ»ýΪ2¦Ðcm2£¬Ôòtan7¦ÈµÈÓÚ£¨¡¡¡¡£©
A£®1B£®-1C£®$\frac{\sqrt{3}}{3}$D£®-$\frac{\sqrt{3}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÉèaΪʵÊý£¬º¯Êýf£¨x£©=x2e1-x-a£¨x-1£©£®
£¨1£©µ±a=0ʱ£¬Çóf£¨x£©ÔÚ$£¨\frac{3}{4}£¬3£©$ÉϵÄ×î´óÖµ£»
£¨2£©É躯Êýg£¨x£©=f£¨x£©+a£¨x-1-e1-x£©£¬µ±g£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¨x1£¼x2£©Ê±£¬×ÜÓÐx2g£¨x1£©¡Ü¦Ëf¡ä£¨x1£©£¬ÇóʵÊý¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=kxlnx£¨k¡Ù0£©Óм«Ð¡Öµ-$\frac{1}{e}$£®
£¨1£©ÇóʵÊýkµÄÖµ£»
£¨2£©ÉèʵÊýa£¬bÂú×ã0£¼a£¼b£®
¢Ù¼ÆË㣺${¡Ò}_{a}^{b}$|lnx-ln$\frac{a+b}{2}}$|dx£»
¢Ú¼Ç¢ÙÖмÆËã½á¹ûG£¨a£¬b£©£¬ÇóÖ¤£º$\frac{1}{b-a}$G£¨a£¬b£©£¼ln2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸