14£®ÒÑÖªÊýÁÐ{an}µÄÊ×ÏîΪ2£¬Ç°nÏîºÍΪSn£¬ÇÒ$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$£¨n¡ÊN*£©£®
£¨1£©Çóa2µÄÖµ£»
£¨2£©Éèbn=$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨3£©Èôam£¬ap£¬ar£¨m£¬p£¬r¡ÊN*£¬m£¼p£¼r£©³ÉµÈ±ÈÊýÁУ¬ÊԱȽÏp2ÓëmrµÄ´óС£¬²¢Ö¤Ã÷£®

·ÖÎö £¨1£©ÓÉa1=2£¬ÇÒ$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$£¨n¡ÊN*£©£®n=1ʱ¿ÉµÃ£º$\frac{1}{2}-\frac{1}{{a}_{2}}$=$\frac{2}{4¡Á2-1}$£¬½âµÃa2£®
£¨2£©ÓÉ$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$£¨n¡ÊN*£©£¬¿ÉµÃ£º4Sn-1=$\frac{2{a}_{n}{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$£¬µ±n¡Ý2ʱ£¬ÀûÓõÝÍÆ¹ØÏµ¿ÉµÃ£º$\frac{{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$-$\frac{{a}_{n-1}}{{a}_{n}-{a}_{n-1}}$=2£¬»¯Îª£º$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$-$\frac{{a}_{n-1}}{{a}_{n}-{a}_{n-1}}$=1£¬¼´bn-bn-1=1£¬ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®
£¨3£©ÓÉ£¨2£©¿ÉµÃ£º$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$=$\frac{4n-1}{4}$£¬»¯Îª£º$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{4n+3}{4n-1}$£®ÀûÓá°ÀÛ³ËÇó»ý¡±¿ÉµÃ£ºan=$\frac{8n-2}{3}$£®ÓÉam£¬ap£¬ar£¨m£¬p£¬r¡ÊN*£¬m£¼p£¼r£©³ÉµÈ±ÈÊýÁУ¬¿ÉµÃ$£¨\frac{8p-2}{3}£©^{2}$=$\frac{8m-2}{3}$¡Á$\frac{8r-2}{3}$£¬£¨4p-1£©2=16mr-4£¨m+r£©+1£¬ÔÙÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ßa1=2£¬ÇÒ$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$£¨n¡ÊN*£©£®¡à$\frac{1}{2}-\frac{1}{{a}_{2}}$=$\frac{2}{4¡Á2-1}$£¬½âµÃa2=$\frac{14}{3}$£®
£¨2£©ÓÉ$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$£¨n¡ÊN*£©£¬¿ÉµÃ£º4Sn-1=$\frac{2{a}_{n}{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$£¬
µ±n¡Ý2ʱ£¬4Sn-1-1=$\frac{2{a}_{n-1}{a}_{n}}{{a}_{n}-{a}_{n-1}}$£¬
Ïà¼õ¿ÉµÃ£º4an=$\frac{2{a}_{n}{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$-$\frac{2{a}_{n-1}{a}_{n}}{{a}_{n}-{a}_{n-1}}$£¬an¡Ù0£¬
¿ÉµÃ£º$\frac{{a}_{n+1}}{{a}_{n+1}-{a}_{n}}$-$\frac{{a}_{n-1}}{{a}_{n}-{a}_{n-1}}$=2£¬±äÐÎΪ$\frac{{a}_{n+1}-{a}_{n}+{a}_{n}}{{a}_{n+1}-{a}_{n}}$-$\frac{{a}_{n-1}}{{a}_{n}-{a}_{n-1}}$=2£¬
»¯Îª£º$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$-$\frac{{a}_{n-1}}{{a}_{n}-{a}_{n-1}}$=1£¬
¡àbn-bn-1=1£¬
¡àÊýÁÐ{bn}ÊǵȲîÊýÁУ¬Ê×ÏîΪ$\frac{2}{\frac{14}{3}-2}$=$\frac{3}{4}$£¬¹«²îΪ1£®
¡àbn=$\frac{3}{4}$+£¨n-1£©=$\frac{4n-1}{4}$£®
£¨3£©ÓÉ£¨2£©¿ÉµÃ£º$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$=$\frac{4n-1}{4}$£¬»¯Îª£º$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{4n+3}{4n-1}$£®
¡àan=$\frac{{a}_{n}}{{a}_{n-1}}$¡Á$\frac{{a}_{n-1}}{{a}_{n-2}}$¡Á¡­¡Á$\frac{{a}_{3}}{{a}_{2}}$¡Á$\frac{{a}_{2}}{{a}_{1}}$¡Áa1=$\frac{4n-1}{4n-5}$¡Á$\frac{4n-5}{4n-9}$¡Á¡­¡Á$\frac{11}{7}$¡Á$\frac{7}{3}$¡Á2=$\frac{8n-2}{3}$£®n=1ʱҲ³ÉÁ¢£®
¡àan=$\frac{8n-2}{3}$£®
¡ßam£¬ap£¬ar£¨m£¬p£¬r¡ÊN*£¬m£¼p£¼r£©³ÉµÈ±ÈÊýÁУ¬
¡à${a}_{p}^{2}$=amar£¬
¡à$£¨\frac{8p-2}{3}£©^{2}$=$\frac{8m-2}{3}$¡Á$\frac{8r-2}{3}$£¬
»¯Îª£º£¨4p-1£©2=£¨4m-1£©£¨4r-1£©£¬
¡à£¨4p-1£©2=16mr-4£¨m+r£©+1¡Ü16mr-8$\sqrt{mr}$+1=$£¨4\sqrt{mr}-1£©^{2}$£¬
¡à4p-1¡Ü4$\sqrt{mr}$-1£¬
¿ÉµÃp2¡Ümr£¬µÈºÅ²»³ÉÁ¢£¬Òò´Ëp2£¼mr£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¡¢¡°ÀÛ³ËÇó»ý¡±·½·¨¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èôz1=a+2i£¬z22=3-4i£¬ÇÒ$\frac{z_1}{z_2}$Ϊ´¿ÐéÊý£¬ÔòʵÊýaµÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÈôÊýÁÐ{an}Âú×ãa1=a2=1£¬an+2=$\left\{{\begin{array}{l}{{a_n}+2£¬}&{n=2k-1£¨k¡Ê{N^*}£©}\\{2{a_n}£¬}&{n=2k£¨k¡Ê{N^*}£©}\end{array}}$£¬ÔòÊýÁÐ{an}ǰ2nÏîºÍS2n=2n+n2-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®sin523¡ãsin943¡ã+sin1333¡ãsin313¡ã=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªU={1£¬2£¬3£¬4}£¬A={1£¬3}£¬Çó∁UA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®½â¹ØÓÚxµÄ²»µÈʽmx2-£¨m+2£©x+m+1£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÁ½µ¥Î»ÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ120¡ã£¬Èô$\overrightarrow{c}$=2$\overrightarrow{a}$-$\overrightarrow{b}$£¬$\overrightarrow{d}$=3$\overrightarrow{b}$-$\overrightarrow{a}$£¬ÊÔÇó|$\overrightarrow{c}$+$\overrightarrow{d}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¼¯ºÏAµÄÔªËØÊÇÓÉ·½³Ì£¨a2-1£©x2+2£¨a+1£©x+1=0µÄʵÊý½â¹¹³É£®
£¨1£©ÈôAΪ¿Õ¼¯£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©ÈôAÊǵ¥ÔªËؼ¯£¬ÇóaµÄÖµ£»
£¨3£©ÈôAÖÐÖÁ¶àÖ»ÓÐÒ»¸öÔªËØ£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ö±Ïßx-4y+1=0¾­¹ýÅ×ÎïÏßy=ax2µÄ½¹µã£¬ÇÒ´ËÅ×ÎïÏßÉÏ´æÔÚÒ»µãP£¬Ê¹PA¡ÍPB£¬ÆäÖУ¬A£¨0£¬2+m£©£¬B£¨0£¬2-m£©£¬ÔòÕýÊýmµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\sqrt{7}$B£®$\sqrt{5}$C£®$\frac{\sqrt{5}}{2}$D£®$\frac{\sqrt{7}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸