精英家教网 > 高中数学 > 题目详情
14.已知实数x,y满足$\left\{{\begin{array}{l}{x+y≥4}\\{x-y≤2}\\{3y-x≤4}\end{array}}\right.$,则$\frac{y}{x}$的最小值为(  )
A.1B.$\frac{1}{3}$C.$\frac{3}{5}$D.$\frac{1}{4}$

分析 由题意作平面区域,易知$\frac{y}{x}$的几何意义是点B(x,y)与点O(0,0)连线的直线的斜率,从而解得.

解答 解:由题意作平面区域如下,
z=$\frac{y}{x}$的几何意义是点B(x,y)与点O(0,0)连线的直线的斜率,由$\left\{\begin{array}{l}{x+y=4}\\{x-y=2}\end{array}\right.$,解得B(3,1),
z=$\frac{y}{x}$有最小值为:$\frac{1}{3}$,
故选:B.

点评 本题考查了平面向量的应用及数形结合的思想应用,同时考查了斜率公式的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|-3≤x≤3},B={x|x>2}.
(1)求(∁RB)∩A;
(2)设集合M={x|x≤a+6},且A⊆M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知两个向量$\overrightarrow a=(cosθ,sinθ),\overrightarrow b=(\sqrt{3},-1)$,则$|{2\overrightarrow a-\overrightarrow b}|$的最大值是(  )
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A为△ABC的内角,向量$\overrightarrow m=(\sqrt{3},-1),\overrightarrow n=(cosA,sinA)$,若$\overrightarrow m⊥\overrightarrow n$,则角A=(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sinxcosx+2,x∈R.
(1)求函数f(x)的最大值和最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等差数列{an}的首项为1,公差为2,则数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$,则目标函数z=x+y的最小值为(  )
A.5B.3C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}是递增等差数列,且a1+a4=5,a2a3=6,设${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,则数列{bn}的前10项和为(  )
A.$\frac{9}{10}$B.$\frac{11}{10}$C.$\frac{9}{11}$D.$\frac{10}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{14}{3}$B.6C.7D.8

查看答案和解析>>

同步练习册答案