精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,极坐标系中,弧所在圆的圆心分别为,曲线是弧,曲线是弧,曲线是弧,曲线是弧.

1)分别写出的极坐标方程;

2)直线的参数方程为为参数),点的直角坐标为,若直线与曲线有两个不同交点,求实数的取值范围,并求出的取值范围.

【答案】12

【解析】

1)设弧上任意一点

根据ABCD是边长为2的正方形,AB所在的圆与原点相切,其半径为1,求得,同理求得其他弧所对应的极坐标方程.

2)把直线的参数方程和的极坐标方程都化为直角坐标方程,利用数形结合求解,把直线的参数方程化为直线的标准参数方程,直角坐标方程联立,再利用参数的几何意义求解.

1)如图所示:

设弧上任意一点

因为ABCD是边长为2的正方形,AB所在的圆与原点相切,其半径为1

所以

所以的极坐标方程为

同理可得:的极坐标方程为

的极坐标方程为

的极坐标方程为

2)因为直线的参数方程为

所以消去t,过定点

直角坐标方程为

如图所示:

因为直线与曲线有两个不同交点

所以

因为直线的标准参数方程为,代入直角坐标方程

所以

所以

所以的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面分别为的中点.

(Ⅰ)证明:平面平面

(Ⅱ)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.

1)根据数据可知具有线性相关关系请建立关于的回归方程(系数精确到);

2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量, 则每位员工每日奖励100元; 则每位员工每日奖励150元; 则每位员工每日奖励200元.现已知该网站6月份日销量服从正态分布请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位)

参考数据 其中 分别为第个月的促销费用和产品销量 .

参考公式

1)对于一组数据 其回归方程的斜率和截距的最小二乘估计分别为 .

2)若随机变量服从正态分布 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若函数恰有一个零点,求实数的取值范围;

2 时,对任意,有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆.以极点为原点,极轴为轴正半轴建立直角坐标系,直线经过点且倾斜角为.

求圆的直角坐标方程和直线的参数方程;

已知直线与圆交与,满足的中点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2-a+1x+alnx+1

(Ⅰ)若x=3fx)的极值点,求fx)的极大值;

(Ⅱ)求a的范围,使得fx≥1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,等腰梯形中,的中点.将沿折起后如图2,使二面角成直二面角,设的中点,是棱的中

点.

1)求证:

2)求证:平面平面

3)判断能否垂直于平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且

证明:直线与圆相切;

面积的最小值.

查看答案和解析>>

同步练习册答案