【题目】已知椭圆
的中心在坐标原点
,其短半轴长为
,一个焦点坐标为
,点
在椭圆
上,点
在直线
上的点,且
.
证明:直线
与圆
相切;
求
面积的最小值.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系
,极坐标系中
,弧
所在圆的圆心分别为
,曲线
是弧
,曲线
是弧
,曲线
是弧
,曲线
是弧
.
![]()
(1)分别写出
的极坐标方程;
(2)直线
的参数方程为
(
为参数),点
的直角坐标为
,若直线
与曲线
有两个不同交点
,求实数
的取值范围,并求出
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
(
,
)的一条渐近线方程为
,点
在双曲线上;抛物线
(
)的焦点F与双曲线的右焦点重合.
(1)求双曲线和抛物线的标准方程;
(2)过焦点F作一条直线l交抛物线于A,B两点,当直线l的斜率为
时,求线段
的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点Pn(an,bn)满足an+1=an·bn+1,bn+1=
(n∈N*),且点P1的坐标为(1,-1).
(1)求过点P1,P2的直线l的方程;
(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如下表:
温度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得:
,
,
线性回归模型的残差平方和
,
,
其中
分别为观测数据中的温度和产卵数,![]()
(1)若用线性回归模型,求y关于x的回归方程
(精确到0.1);
(2)若用非线性回归模型求得y关于x的回归方程为
,且相关指数
.
①试与1中的回归模型相比,用
说明哪种模型的拟合效果更好.
②用拟合效果好的模型预测温度为35℃时该用哪种药用昆虫的产卵数(结果取整数)
附:一组数据
其回归直线
的斜率和截距的最小二乘估计为
,
;相关指数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程选讲
在平面直角坐标系中,以原点为极点,以
轴非负半轴为极轴建立极坐标系, 已知曲线
的极坐标方程为
,直线
的极坐标方程为
.
(Ⅰ)写出曲线
和直线
的直角坐标方程;
(Ⅱ)设直线
过点
与曲线
交于不同两点
,
的中点为
,
与
的交点为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数
(
是常数,且
).
(1)讨论函数
的单调区间;
(2)当
在
处取得极值时,若关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3)求证:当
,
时,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为原点,以极轴为
轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线
的参数方程为
.
(1)写出直线
的普通方程与曲线
的直角坐标方程;
(2)设曲线
经过伸缩变换
得到曲线
,曲线
上任一点为
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com