精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且

证明:直线与圆相切;

面积的最小值.

【答案】证明见解析;1.

【解析】

由题意可得椭圆的方程为,由点在直线上,且的斜率必定存在,分类讨论当的斜率为时和斜率不为时的情况列出相应式子,即可得出直线与圆相切;

知,的面积为

解:由题意,椭圆的焦点在轴上,且,所以

所以椭圆的方程为

由点在直线上,且的斜率必定存在,

的斜率为时,

于是的距离为,直线与圆相切.

的斜率不为时,设的方程为,与联立得

所以,从而

,故的方程为,而上,故

从而,于是

此时,的距离为,直线与圆相切.

综上,直线与圆相切.

知,的面积为

上式中,当且仅当等号成立,

所以面积的最小值为1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,极坐标系中,弧所在圆的圆心分别为,曲线是弧,曲线是弧,曲线是弧,曲线是弧.

1)分别写出的极坐标方程;

2)直线的参数方程为为参数),点的直角坐标为,若直线与曲线有两个不同交点,求实数的取值范围,并求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线)的一条渐近线方程为,点在双曲线上;抛物线)的焦点F与双曲线的右焦点重合.

1)求双曲线和抛物线的标准方程;

2)过焦点F作一条直线l交抛物线于AB两点,当直线l的斜率为时,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Pn(an,bn)满足an+1=an·bn+1,bn+1(n∈N*),且点P1的坐标为(1,-1).

(1)求过点P1,P2的直线l的方程;

(2)试用数学归纳法证明:对于n∈N*Pn都在(1)中的直线l

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如下表:

温度x/℃

21

23

24

27

29

32

产卵数y/

6

11

20

27

57

77

经计算得:

线性回归模型的残差平方和

其中分别为观测数据中的温度和产卵数,

1)若用线性回归模型,求y关于x的回归方程(精确到0.1);

2)若用非线性回归模型求得y关于x的回归方程为,且相关指数.

①试与1中的回归模型相比,用说明哪种模型的拟合效果更好.

②用拟合效果好的模型预测温度为35℃时该用哪种药用昆虫的产卵数(结果取整数)

附:一组数据其回归直线的斜率和截距的最小二乘估计为;相关指数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程选讲

在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系, 已知曲线的极坐标方程为,直线的极坐标方程为

(Ⅰ)写出曲线和直线的直角坐标方程;

(Ⅱ)设直线过点与曲线交于不同两点的中点为的交点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数是常数,且.

1)讨论函数的单调区间;

2)当处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围;

3)求证:时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,以极轴为轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线的参数方程为 .

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)设曲线经过伸缩变换得到曲线,曲线上任一点为,求的取值范围.

查看答案和解析>>

同步练习册答案