精英家教网 > 高中数学 > 题目详情
函数在定义域(-,3)内可导,其图象如图所示,记的导函
数为,则不等式的解集为(  )
A.[-,1]∪[2,3)B.[-1,]∪[]
C.[-]∪[1,2]D.[-,-]∪[]
A
当导数大于零可得函数的单调增区间,导数小于零可得函数的单调递减区间,因此不等式的解集为[-,1]∪[2,3).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
 。  
(1)若 
(2)求   
(3)求证:当时,恒成立。  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ)求的单调区间;
(Ⅱ)证明:当时,
(Ⅲ)证明:当,且…,时,
(1)
(2) .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知函数
(1)当时,若函数上为单调增函数,求的取值范围;
(2)当时,求证:函数f (x)存在唯一零点的充要条件是
(3)设,且,求证:<

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数,其中.
(Ⅰ)若的极值点,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)若上的最大值是,求的取值范围 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在(0,1)上不是单调函数,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分15分)已知为常数,函数)。
(Ⅰ) 若函数在区间(-2,-1)上为减函数,求实数的取值范围;
(Ⅱ).设 记函数,已知函数在区间内有两个极值点,且,若对于满足条件的任意实数都有为正整数),求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在上的可导函数,且满足. 若,则
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是导函数的图象,那么函数在下面哪个区间是减函数(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案