精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)在其定义域R上单调递增,则满足f(2x-2)<f(2)的x的取值范围是(  )
A.(-∞,0)B.(2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,2)

分析 根据函数的基本性质求解即可.

解答 解:函数f(x)是定义域R上单调递增,f(2x-2)<f(2)
则有:2x-2<2,
解得:x<2
所以得x的取值范围(-∞,2)
故选:D.

点评 本题考查了函数的基本的性质的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知曲线C的方程为:|x|+y2-3y=0,则:
(1)y的取值范围是[0,3];
(2)曲线C的对称轴方程是x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的偶函数f(x)在(-∞,0]上递减,f(-$\frac{1}{3}$)=0,则满足f(log2x)>0的x的取值范围是x>${2}^{\frac{1}{3}}$或0<x<${2}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.同时掷两枚骰子,所得点数之和为5的概率为(  )
A.$\frac{1}{12}$B.$\frac{1}{21}$C.$\frac{1}{9}$D.$\frac{1}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知命题p:方程4x2-4(m-2)x+1=0有两个不相等的负根;命题q:方程x2+3mx+1=0无实根.若p∨q为真,¬q为真,则实数m的取值范围是m≤-$\frac{2}{3}$,或$\frac{2}{3}$≤m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知在实数集R上的可导函数f(x),满足f(x+1)是奇函数,且当x≥1时,$\frac{1}{f′(x)}$>1(其中f′(x)为f(x)的导函数),则不等式f(x)>x-1的解集是(  )
A.(0,1)B.(1,+∞)C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)是定义域在(-∞,0)∪(0,+∞)上的不恒为零的函数,且对于任意非零实数a,b满足f(ab)=f(a)+f(b).
(1)求f(1)与f(-1)的值;
(2)判断并证明y=f(x)的奇偶性;
(3)若函数f(x)满足对任意的x1,x2∈(-∞,0),(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,求不等式f(2x-1)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y,a,b∈R+,且x+y=1,则$\frac{a}{x}$+$\frac{b}{y}$的最小值是(  )
A.($\sqrt{a}$+$\sqrt{b}$)2B.$\frac{1}{a}$+$\frac{1}{b}$C.$\sqrt{a}$+$\sqrt{b}$D.a+b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a=40.9,b=80.45,c=($\frac{1}{2}$)-1.5,则(  )
A.c>a>bB.b>a>cC.a>b>cD.a>c>b

查看答案和解析>>

同步练习册答案