分析 (1)令a=b=1计算f(1),令a=b=-1计算f(-1);
(2)令a=x,b=-1得出f(-x)=f(x),故f(x)为偶函数;
(3)f(x)在(-∞,0)上为减函数,在(0,+∞)上为增函数,且f(-1)=f(1)=0,故不等式等价于-1<2x-1<1且2x-1≠0.
解答 解:(1)令a=b=1得f(1)=2f(1),∴f(1)=0,
∴a=b=-1得f(1)=2f(-1)=0,∴f(-1)=0.
(2)令a=x,b=-1得f(-x)=f(x)+f(-1)=f(x),
∴f(x)是偶函数.
(3)∵对任意的x1,x2∈(-∞,0)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,
∴f(x)在(-∞,0)上是减函数,又f(x)是偶函数,
∴f(x)在(0,+∞)上是增函数,
∵f(1)=f(-1)=0,f(2x-1)<0,
∴-1<2x-1<1且2x-1≠0,
解得0<x<1,且x≠$\frac{1}{2}$.
∴不等式f(2x-1)<0的解集为{x|0<x<1且x$≠\frac{1}{2}$}.
点评 本题考查了函数奇偶性,单调性的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (2,+∞) | C. | (-∞,0)∪(2,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,3] | B. | (-2,3] | C. | [1,2) | D. | (-∞,-2]∪[1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②④ | B. | ②③⑤ | C. | ①③⑤ | D. | ②④⑤ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com