精英家教网 > 高中数学 > 题目详情
4.已知集合P={x∈R||x-2|≤1},Q={x∈R|x2≥4} 则P∪(∁RQ)=(  )
A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)

分析 化简集合P、Q,求出∁RQ,再计算P∪(∁RQ).

解答 解:集合P={x∈R||x-2|≤1}={x|-1≤x-2≤1}={x|1≤x≤3},
Q={x∈R|x2≥4}={x|x≤-2或x≥2},
∴∁RQ={x|-2<x<2},
∴P∪(∁RQ)={x|-2<x≤3}=(-2,3].
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.“x≥1”是“$\frac{2x-1}{x}$≥1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不必要又不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知命题p:方程4x2-4(m-2)x+1=0有两个不相等的负根;命题q:方程x2+3mx+1=0无实根.若p∨q为真,¬q为真,则实数m的取值范围是m≤-$\frac{2}{3}$,或$\frac{2}{3}$≤m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)是定义域在(-∞,0)∪(0,+∞)上的不恒为零的函数,且对于任意非零实数a,b满足f(ab)=f(a)+f(b).
(1)求f(1)与f(-1)的值;
(2)判断并证明y=f(x)的奇偶性;
(3)若函数f(x)满足对任意的x1,x2∈(-∞,0),(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,求不等式f(2x-1)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:已知函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax,
(1)若a=1,求f(x)的极值;
(2)当0<a<2 时,f(x)在[1,4]上的最小值为-$\frac{16}{3}$,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y,a,b∈R+,且x+y=1,则$\frac{a}{x}$+$\frac{b}{y}$的最小值是(  )
A.($\sqrt{a}$+$\sqrt{b}$)2B.$\frac{1}{a}$+$\frac{1}{b}$C.$\sqrt{a}$+$\sqrt{b}$D.a+b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:数列{an}满足a1+3a2+32a3+…+3n-1an=n,n∈N*
(1)求数列{an}的通项;
(2)设bn=log3$\frac{3}{{a}_{n}}$,求数列{$\frac{{b}_{n}}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{{\begin{array}{l}{|{lgx}|,0<x≤3}\\{f(6-x),3<x<6}\end{array}}\right.$,设方程f(x)=2-x+b(b∈R)的四个实根从小到大依次x1,x2,x3,x4,对于满足条件的任意一组实根,下列判断中正确的为(1),(2),(3).(请填所有正确命题的序号)
(1)0<x1x2<1或0<(6-x3)(6-x4)<1;
(2)0<x1x2<1且(6-x3)(6-x4)>1;
(3)1<x1x2<9或9<x3x4<25;        
(4)1<x1x2<9且25<x3x4<36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.要得到函数y=2sin2x的图象,只需将$y={cos^2}x+\sqrt{3}sin2x-{sin^2}x$的图象(  )
A.向右平移$\frac{π}{12}$个单位B.向左平移$\frac{π}{12}$个单位
C.向右平移$\frac{π}{6}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

同步练习册答案