19£®ÒÑÖªº¯Êý$f£¨x£©=\left\{{\begin{array}{l}{|{lgx}|£¬0£¼x¡Ü3}\\{f£¨6-x£©£¬3£¼x£¼6}\end{array}}\right.$£¬Éè·½³Ìf£¨x£©=2-x+b£¨b¡ÊR£©µÄËĸöʵ¸ù´ÓСµ½´óÒÀ´Îx1£¬x2£¬x3£¬x4£¬¶ÔÓÚÂú×ãÌõ¼þµÄÈÎÒâÒ»×éʵ¸ù£¬ÏÂÁÐÅжÏÖÐÕýÈ·µÄΪ£¨1£©£¬£¨2£©£¬£¨3£©£®£¨ÇëÌîËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©
£¨1£©0£¼x1x2£¼1»ò0£¼£¨6-x3£©£¨6-x4£©£¼1£»
£¨2£©0£¼x1x2£¼1ÇÒ£¨6-x3£©£¨6-x4£©£¾1£»
£¨3£©1£¼x1x2£¼9»ò9£¼x3x4£¼25£»        
£¨4£©1£¼x1x2£¼9ÇÒ25£¼x3x4£¼36£®

·ÖÎö ·½³Ìf£¨x£©=2-x+b£¨b¡ÊR£©µÄ¸ù¿É»¯Îªº¯Êýy=f£¨x£©-2-xÓëy=bͼÏóµÄ½»µãµÄºá×ø±ê£¬×÷º¯Êýy=f£¨x£©-2-xµÄͼÏó·ÖÎö¼´¿É£®

½â´ð ½â£º·½³Ìf£¨x£©=2-x+b£¨b¡ÊR£©µÄ¸ù¿É»¯Îª
º¯Êýy=f£¨x£©-2-xÓëy=bͼÏóµÄ½»µãµÄºá×ø±ê£¬
×÷º¯Êýy=f£¨x£©-2-xµÄͼÏóÈçÏ£¬

ÓÉͼÏó¿ÉµÃ£¬0£¼x1x2£¼1£¬¹Ê£¨1£©ÕýÈ·£»
£¨6-x3£©£¨6-x4£©£¾1£¬¹Ê£¨2£©ÕýÈ·£»
9£¼x3x4£¼25£¬¹Ê£¨3£©ÕýÈ·£»
25£¼x3x4£¼36£¬¹Ê£¨4£©´íÎó£»
¹Ê´ð°¸Îª£º£¨1£©£¬£¨2£©£¬£¨3£©

µãÆÀ ±¾Ì⿼²éÁË·½³ÌµÄ¸ùÓ뺯ÊýµÄͼÏóµÄ¹ØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}+2x£¬x¡Ü0}\\{lnx£¬x£¾0}\end{array}\right.$£¬g£¨x£©=f£¨f£¨x£©-k£©+1ÓÐ5¸öÁãµã£¬ÔòʵÊýkµÄȡֵ·¶Î§Îª0£¼k¡Ü1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª¼¯ºÏP={x¡ÊR||x-2|¡Ü1}£¬Q={x¡ÊR|x2¡Ý4} ÔòP¡È£¨∁RQ£©=£¨¡¡¡¡£©
A£®[2£¬3]B£®£¨-2£¬3]C£®[1£¬2£©D£®£¨-¡Þ£¬-2]¡È[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¸´Êýz=£¨2+3i£©iµÄʵ²¿ÊÇ£¨¡¡¡¡£©
A£®2B£®-2C£®3D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ö±Ïßln£ºy=3x-$\sqrt{10n}$ÓëÔ²Cn£ºx2+y2=6an+n+6½»ÓÚ²»Í¬µÄÁ½µãAn¡¢Bn£¬n¡ÊN*£®ÊýÁÐ{an}Âú×㣺a1=1£¬3an+1=$\frac{1}{4}{|{{A_n}{B_n}}|^2}$
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôbn=$\frac{{{a_n}+2}}{3}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍT£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®½«º¯Êýf£¨x£©=$\sqrt{3}$cos2x+sin2xµÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶È£¬ÔÙÏòÉÏÆ½ÒÆ1¸öµ¥Î»³¤¶È£¬µÃµ½º¯Êýg£¨x£©µÄͼÏó£¬ÇÒÂú×ã|g£¨x£©|¡Üaºã³ÉÁ¢£¬ÔòaµÄ×îСֵΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòDÄÚÄ³Çø¼äIÉÏÊÇÔöº¯Êý£¬¶øy=$\frac{f£¨x£©}{x}$ÔÚIÉÏÊǼõº¯Êý£¬Ôò³Æy=f£¨x£©ÔÚIÉÏÊÇ¡°ÈõÔöº¯Êý¡±£®
£¨1£©Çë·Ö±ðÅжÏf£¨x£©=x+4£¬g£¨x£©=x2+4x+2ÔÚx¡Ê£¨1£¬2£©ÊÇ·ñÊÇ¡°ÈõÔöº¯Êý¡±£¬²¢¼òҪ˵Ã÷ÀíÓÉ£»
£¨2£©Èôº¯Êýh£¨x£©=x2+£¨m-$\frac{1}{2}$£©x+b£¨m£¬bÊdz£Êý£©ÔÚ£¨0£¬1]ÉÏÊÇ¡°ÈõÔöº¯Êý¡±£¬ÇëÇó³öm¼°bÓ¦Âú×ãµÄÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÉèÖ±ÏßϵA£º£¨x-1£©cos ¦È+£¨y-1£©sin ¦È=1£¨0¡Ü¦È£¼2¦Ð£©£¬¶ÔÓÚÏÂÁÐÎå¸öÃüÌ⣺
¢Ù´æÔÚ¶¨µãP²»ÔÚAÖеÄÈÎÒ»Ö±ÏßÉÏ£»
¢ÚAÖÐËùÓÐÖ±Ïß¾ù¾­¹ýÒ»¸ö¶¨µã£»
¢Û¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¨n¡Ý3£©£¬´æÔÚÕýn±ßÐΣ¬ÆäËùÓб߾ùÔÚAÖеÄÖ±ÏßÉÏ£»
¢ÜAÖеÄÖ±ÏßËùÄÜΧ³ÉµÄÕýÈý½ÇÐεÄÃæ»ý¶¼ÏàµÈ£»
¢ÝAÖеÄÖ±ÏßËùÄÜΧ³ÉµÄÕý·½ÐεÄÃæ»ý¶¼ÏàµÈ£®
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÜB£®¢Ú¢Û¢ÝC£®¢Ù¢Û¢ÝD£®¢Ú¢Ü¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªtan¦Á=2£¬Ôò$\frac{{{{sin}^3}¦Á-2{{cos}^3}¦Á}}{{sin¦Á•{{cos}^2}¦Á}}$µÄֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸