精英家教网 > 高中数学 > 题目详情
7.复数z=(2+3i)i的实部是(  )
A.2B.-2C.3D.-3

分析 利用复数的运算法则、实部的定义即可得出.

解答 解:复数z=(2+3i)i=2i-3的实部为-3.
故选:D.

点评 本题考查了复数的运算法则、实部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.定义在R上的偶函数f(x)在(-∞,0]上递减,f(-$\frac{1}{3}$)=0,则满足f(log2x)>0的x的取值范围是x>${2}^{\frac{1}{3}}$或0<x<${2}^{-\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)是定义域在(-∞,0)∪(0,+∞)上的不恒为零的函数,且对于任意非零实数a,b满足f(ab)=f(a)+f(b).
(1)求f(1)与f(-1)的值;
(2)判断并证明y=f(x)的奇偶性;
(3)若函数f(x)满足对任意的x1,x2∈(-∞,0),(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,求不等式f(2x-1)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y,a,b∈R+,且x+y=1,则$\frac{a}{x}$+$\frac{b}{y}$的最小值是(  )
A.($\sqrt{a}$+$\sqrt{b}$)2B.$\frac{1}{a}$+$\frac{1}{b}$C.$\sqrt{a}$+$\sqrt{b}$D.a+b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:数列{an}满足a1+3a2+32a3+…+3n-1an=n,n∈N*
(1)求数列{an}的通项;
(2)设bn=log3$\frac{3}{{a}_{n}}$,求数列{$\frac{{b}_{n}}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某年级文科班共有4个班级,每班各有40位学生(其中男生8人,女生32人).若从该年级文科生中以简单随机抽样抽出20人,则下列选项中正确的是(  )
A.每班至少会有一人被抽中
B.抽出来的女生人数一定比男生人数多
C.已知小文是男生,小美是女生,则小文被抽中的概率小于小美被抽中的概率
D.若学生甲和学生乙在同一班,学生丙在另外一班,则甲、乙、丙三人各自被抽中的概率相等

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{{\begin{array}{l}{|{lgx}|,0<x≤3}\\{f(6-x),3<x<6}\end{array}}\right.$,设方程f(x)=2-x+b(b∈R)的四个实根从小到大依次x1,x2,x3,x4,对于满足条件的任意一组实根,下列判断中正确的为(1),(2),(3).(请填所有正确命题的序号)
(1)0<x1x2<1或0<(6-x3)(6-x4)<1;
(2)0<x1x2<1且(6-x3)(6-x4)>1;
(3)1<x1x2<9或9<x3x4<25;        
(4)1<x1x2<9且25<x3x4<36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a=40.9,b=80.45,c=($\frac{1}{2}$)-1.5,则(  )
A.c>a>bB.b>a>cC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在某次物理考试中,考生的成绩ξ服从正态分布,即ξ:N(70,100),已知满分为100分.
(1)试求考试成绩ξ位于区间(50,90)内的概率;
(2)若这次考试共有1000名学生参加,试估计这次考试及格(不小于60分)的人数.
(附:若ξ:N(μ,σ2),则P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544,P(μ-3σ<ξ<μ+3σ)=0.9974)

查看答案和解析>>

同步练习册答案