精英家教网 > 高中数学 > 题目详情
1.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b,b>0)的离心率为$\frac{{\sqrt{5}}}{2}$,则椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 根据双曲线的离心率建立方程关系求出a,b的关系,然后结合椭圆离心率的定义进行求解即可.

解答 解:在双曲线中c2=a2+b2
∵双曲线的离心率为$\frac{{\sqrt{5}}}{2}$,
∴$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$=$\frac{5}{4}$,即4a2+4b2=5a2
即a2=4b2,则c2=a2-b2=4b2-b2=3b2
则e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{3{b}^{2}}{4{b}^{2}}$=$\frac{3}{4}$,即e=$\frac{\sqrt{3}}{2}$,
故椭圆的离心率是$\frac{{\sqrt{3}}}{2}$,
故选:C.

点评 本题主要考查双曲线和椭圆离心率的计算,根据条件建立方程求出a,c的关系是解决本题的关键.注意椭圆和双曲线a,c关系的不同.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在四面体ABCD中,截面PQMN是正方形,求证:
(1)AC∥截面PQMN;
(2)AC⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某班学生在一次月考中数学不及格的占16%,语文不及格的占7%,两门都不及格的占4%,已知该班某学生在月考中语文不及格,则该学生在月考中数学不及格的概率是(  )
A.$\frac{1}{4}$B.$\frac{7}{16}$C.$\frac{4}{7}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若双曲线$\frac{x^2}{9}$-$\frac{y^2}{m}$=1的离心率为$\frac{{\sqrt{14}}}{3}$,则双曲线焦点F到渐近线的距离为(  )
A.2B.$\sqrt{14}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,某居民小区内建一块直角三角形草坪ABC,直角边AB=40米,AC=40$\sqrt{3}$米,扇形花坛ADE是草坪的一部分,其半径为20米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设两条小路OM和ON,考虑到小区整体规划,要求M、N在斜边BC上,O在弧$\widehat{DE}$上,OM∥AB,ON∥AC,.
(1)设∠OAE=θ,记f(θ)=OM+ON,求f(θ)的表达式,并求出此函数的定义域;
(2)经核算,两条路每米铺设费用均为400元,如何设计θ的大小使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=mlnx(m∈R),g(x)=$\frac{x-1}{2x}$.
(1)当m=1时,求y=f(x)在x=1处的切线方程;
(2)设F(x)=f(x)-2g(x),若函数F(x)在区间[1,e]上的最小值为-1,求实数m的值;
(3)当m=$\frac{3}{16}$时,若不等式f(x)+t≤kx+b≤g(x)对?x∈[2,4]恒成立,试给出实数t的一个值,使满足条件的实数k,b唯一,并直接写出k,b的值(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)右支上一点,F1、F2分别为双曲线的右、右焦点,若I为△PF1F2的内心,则S△IPF1-S△IPF2=$\frac{a}{{\sqrt{{a^2}+{b^2}}}}{S_{△I{F_1}{F_2}}}$成立.请类比该结论得出有关椭圆的一个结论并进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一货轮航行到M处,测得灯塔S在货轮的北偏东15°方向上,与灯塔S相距20nmile,随后货轮按北偏西30°的方向航行3h后,又测得灯塔在货轮的东北方向,则货轮的速度为(  )
A.$\frac{10(\sqrt{6}+\sqrt{2})}{3}$nmile/hB.$\frac{10(\sqrt{6}-\sqrt{2})}{3}$nmile/hC.$\frac{10(\sqrt{6}+\sqrt{3})}{3}$nmile/hD.$\frac{10(\sqrt{6}-\sqrt{3})}{3}$nmile/h

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别是为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2015年8月某日某省x个监测点数据统计如表:
空气污染指数(单位:μg/m3[0,50](50,100](100,150](150,200]
监测点个数1540y10
(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(2)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A“两个都为良”发生的概率是多少?

查看答案和解析>>

同步练习册答案