精英家教网 > 高中数学 > 题目详情
16.α为第三象限的角,则$\frac{{\sqrt{1+cos2α}}}{cosα}-\frac{{\sqrt{1-cos2α}}}{sinα}$=(  )
A.0B.1C.-1D.2

分析 利用二倍角化简可得答案.

解答 解:α为第三象限的角,
∴sinα、cosα<0.
则$\frac{{\sqrt{1+cos2α}}}{cosα}-\frac{{\sqrt{1-cos2α}}}{sinα}$=$\frac{\sqrt{1+2co{s}^{2}α-1}}{cosα}$$-\frac{\sqrt{1-(1-2si{n}^{2}α)}}{sinα}$=$\sqrt{2}$$(\frac{-cosα}{cosα}-\frac{-sinα}{sinα})=0$.
故选:A.

点评 本题考查了二倍角化简和运用能力.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年重庆市高一上学期第一次月考数学试卷(解析版) 题型:填空题

如图,点上的一点,射线的延长线于点,若,则

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某学习小组、男女生共8人,现从男生中选2人,从女生中选1人,分别去做3种不同的工作,共有90种不同的选法,则男、女生人数为(  )
A.男2人,女6人B.男3人,女5人C.男5人,女3人D.男6人,女2人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令${b_n}={a_n}•{3^n}$(n∈N*),求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知?(x)=sin (x+$\frac{π}{6}$),若cos α=$\frac{3}{5}$(0<α<$\frac{π}{2}$),则f(α+$\frac{π}{12}$)=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=sin($\frac{k}{2}$x+$\frac{π}{3}$)(k>0)的最小正周期不大于2,则正整数k的最小值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知中心在原点椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,其中一个顶点是(0,-$\sqrt{3}$)
(1)求椭圆C的方程;
(2)若过点P(-2,1)的直线l与椭圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A(0,1),B、C为椭圆x2+my2=m(m>1)上的三个不同点,AB⊥AC.
(Ⅰ)当椭圆长轴长为4时,求椭圆的离心率e;
(Ⅱ)求△ABC面积的最大值f(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),则$\frac{{a}_{3}}{{a}_{4}}$=(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案