分析 设左焦点为F′,根据椭圆定义:|AF|+|AF′|=2a,由B和A关于原点对称可知|BF|=|AF′|,推得|AF|+|BF|=2a,又根据O是Rt△ABF的斜边中点可知|AB|=2c,在Rt△ABF中用α和c分别表示出|AF|和|BF|,代入|AF|+|BF|=2a中即可表示出$\frac{c}{a}$,即离心率e,再由α的范围确定e的范围.
解答 解:∵B和A关于原点对称,∴B也在椭圆上,
设左焦点为F′,
根据椭圆定义:|AF|+|AF′|=2a,
又∵|BF|=|AF′|,∴|AF|+|BF|=2a,①
O是Rt△ABF的斜边中点,∴|AB|=2c,
又|AF|=2csinα,②
|BF|=2ccosα,③
把②③代入①,得2csinα+2ccosα=2a,
∴$\frac{c}{a}$=$\frac{1}{sinα+cosα}$,即e=$\frac{1}{sinα+cosα}$=$\frac{1}{\sqrt{2}sin(α+\frac{π}{4})}$,
∵α∈[$\frac{π}{12},\frac{π}{4}$],
∴$\frac{π}{3}≤α+\frac{π}{4}≤\frac{π}{2}$,
∴$\frac{\sqrt{3}}{2}≤sin(α+\frac{π}{4})≤1$,
∴$\frac{\sqrt{2}}{2}≤e≤\frac{\sqrt{6}}{3}$.
故答案为:$[\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{3}]$.
点评 本题考查椭圆的简单性质,考查了定义在解圆锥曲线问题中的应用,训练了三角函数最值的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com