精英家教网 > 高中数学 > 题目详情
11.某几何体的三视图所示.
(Ⅰ)求此几何体的表面积;
(Ⅱ)求此几何体的体积.

分析 几何体为圆锥与圆柱的组合体,表面由圆锥侧面,圆柱侧面和圆柱底面组成,根据三视图得出圆锥的高计算即可.

解答 解:由三视图可知该几何体上部是一个圆锥,下部是一个圆柱,
圆锥与圆柱的底面半径r=3,圆柱的高为h1=5,圆锥的高h2=4.
∴圆锥的母线l=$\sqrt{{{h}_{2}}^{2}+{r}^{2}}$=5.
(1)圆锥的侧面积S1=πrl=π×3×5=15π;
圆柱的侧面积S2=2πrh1=2π×3×5=30π,
圆柱的底面积S3=πr2=π×32=9π,
∴几何体的表面积S=15π+30π+9π=54π.
(2)圆柱的体积V1=πr2h1=π×32×5=45π,
圆锥的体积V2=$\frac{1}{3}π{r}^{2}{h}_{2}$=$\frac{1}{3}×π×{3}^{2}×4$=12π.
∴几何体的体积V=45π+12π=57π.

点评 本题考查了旋转体的三视图和结构特征,面积与体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某电视台拟举行由选手报名参加的比赛类型的娱乐节目,选手进入正赛前需通过海选,参加海选的选手可以参加A、B、C三个测试项目,只需通过一项测试即可停止测试,通过海选.若通过海选的人数超过预定正赛参赛人数,则优先考虑参加海选测试次数少的选手进入正赛.当某选手三项测试均未通过,则被淘汰.现已知甲选手通过项目A、B、C测试的概率为分别为$\frac{1}{5}$、$\frac{1}{4}$、$\frac{1}{3}$,且通过各次测试的事件相互独立.
(Ⅰ)若甲选手先测试A项目,再测试B项目,后测试C项目,求他通过海选的概率;若改变测试顺序,对他通过海选的概率是否有影响?说明理由.
(Ⅱ)若甲选手按某种顺序参加海选测试,第一项能通过的概率为p1,第二项能通过的概率为p2,第三项能通过的概率为p3,设他结束测试时已参加测试的次数记为ξ,求ξ的分布列和期望(用p1、p2、p3表示);并说明甲选手按怎样的测试顺序更有利于他进入正赛.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{\sqrt{1-x}}{ln(x+1)}$的定义域为(  )
A.(-1,1]B.(-1,0)∪(0,1]C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设直线nx+(n+1)y=$\sqrt{2}$(n∈N*)与两坐标轴围城的三角形的面积为Sn,则S1+S2+S3+…+S2016的值为$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\ f({x+3}),x≤0\end{array}$,则f(-1)的值是(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一点A关于原点O的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且$α∈[{\frac{π}{12},\frac{π}{4}}]$,则椭圆离心率的范围是$[\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x3+bx(x∈R)在[-1,1]上是减函数,则b的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“x∈A”是“x∈A∪B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.sin(-1020°)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案