分析 (1)连结BD,交AC于F,连结EF.由中位线定理可得EF∥SD,故SD∥平面ACE;
(2)由三线合一可得BS⊥AE,BS⊥CE,于是BS⊥平面AEC,故BS⊥AC;
(3)由平面ABS⊥平面CBS可得AE⊥平面BCS,于是VS-BCD=VD-BCS=VA-BCS=$\frac{1}{3}{S}_{△BCS}•AE$.
解答
证明:(1)连结BD,交AC于F,连结EF.
∵底面ABCD是平行四边形,
∴F是BD的中点,又E是BS的中点,
∴EF∥SD,
又SD?平面AEC,EF?平面AEC
∴SD∥平面AEC.
(2)∵AB=AS,BC=CS,E是BS的中点,
∴AE⊥BS,CE⊥BS,又AE?平面AEC,CE?平面AEC,AE∩CE=E,
∴BS⊥平面AEC,∵AC?平面AEC,
∴BS⊥BC.
(3)∵平面ABS⊥平面CBS,平面ABS∩平面CBS=BS,AE⊥BS,
∴AE⊥平面BSC.
∵AB⊥AS,BS=BC=CS=2,
∴AE=$\frac{1}{2}BS$=1,S△BCS=$\frac{\sqrt{3}}{4}×{2}^{2}$=$\sqrt{3}$.
∴VS-BCD=VD-BCS=VA-BCS=$\frac{1}{3}{S}_{△BCS}•AE$=$\frac{1}{3}×\sqrt{3}×1$=$\frac{\sqrt{3}}{3}$.
点评 本题考查了线面平行,线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{26}}}{13}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{6}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{16}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com