精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,直线.

(1)若抛物线和直线没有公共点,求的取值范围;

(2)若,且抛物线和直线只有一个公共点时,求的值.

【答案】(1);(2)2.

【解析】试题分析:(1)联立方程 ,整理得

由抛物线和直线没有公共点,则,即可求得k的取值范围;

(2)当抛物线和直线只有一个公共点时,记公共点坐标为,由,即,解得,因为,故,将代入求得x的值即得点M的坐标,可求的值.

试题解析:(1)联立方程

整理得

由抛物线和直线没有公共点,则

,解得.

(2)当抛物线和直线只有一个公共点时,记公共点坐标为

,即,解得

因为,故

代入,解得

由抛物线的定义知:.

点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ,g(x)=x2﹣2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.设向量 =(a,c), =(cosC,cosA).
(1)若 ,c= a,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.

(1)请按字母FGH标记在正方体相应地顶点处(不需要说明理由)

(2)判断平面BEG与平面ACH的位置关系.并说明你的结论;

(3)证明:直线DF平面BEG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,﹣2),椭圆E: =1(a>b>0)的离心率为 ,F是椭圆的焦点,直线AF的斜率为 ,O为坐标原点.
(Ⅰ)求E的方程;
(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2009年广东卷文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610196200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 .

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1g(1﹣x)的值域为(﹣∞,0),则函数f(x)的定义域为(
A.[0,+∞]
B.(0,1)
C.[﹣9,+∞)
D.[﹣9,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn+an=4,n∈N*
(1)求数列{an}的通项公式;
(2)已知cn=2n+3(n∈N*),记dn=cn+logCan(C>0,C≠1),是否存在这样的常数C,使得数列{dn}是常数列,若存在,求出C的值;若不存在,请说明理由.
(3)若数列{bn},对于任意的正整数n,均有 成立,求证:数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,上海迪士尼乐园将一三角形地块ABC的一角APQ开辟为游客体验活动区.已知∠A=120°,AB、AC的长度均大于200米.设AP=x,AQ=y,且AP,AQ总长度为200米.

(1)当x,y为何值时?游客体验活动区APQ的面积最大,并求最大面积;
(2)当x,y为何值时?线段|PQ|最小,并求最小值.

查看答案和解析>>

同步练习册答案