3£®ÔÚij´Î²âÊÔºó£¬Ò»Î»ÀÏʦ´Ó±¾°à48ͬѧÖÐËæ»ú³éÈ¡6λͬѧ£¬ËûÃǵÄÓïÎÄ¡¢ÀúÊ·³É¼¨Èç±í£º
ѧÉú±àºÅ123456
ÓïÎijɼ¨x6070749094110
ÀúÊ·³É¼¨y586375798188
£¨1£©Èô¹æ¶¨ÓïÎijɼ¨²»µÍÓÚ90·ÖΪÓÅÐ㣬ÀúÊ·³É¼¨²»µÍÓÚ80·ÖΪÓÅÐ㣬ÒÔÆµÂÊ×÷¸ÅÂÊ£¬·Ö±ð¹À¼Æ¸Ã°àÓïÎÄ¡¢ÀúÊ·³É¼¨ÓÅÐãµÄÈËÊý£»
£¨2£©ÓÃÉϱíÊý¾Ý»­³öÉ¢µãͼÒ×·¢ÏÖÀúÊ·³É¼¨yÓëÓïÎijɼ¨x¾ßÓнÏÇ¿µÄÏßÐÔÏà¹Ø¹ØÏµ£¬ÇóyÓëxµÄÏßÐԻع鷽³Ì£¨ÏµÊý¾«È·µ½0.1£©£®²Î¿¼¹«Ê½£º»Ø¹éÖ±Ïß·½³ÌÊÇy=bx+a£¬ÆäÖÐb=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£¬a=$\overline{y}$-b$\overline{x}$£®

·ÖÎö £¨1£©ÓɱíÖÐÊý¾ÝµÃ³öÓïÎÄ¡¢ÀúÊ·³É¼¨ÎªÓÅÐãµÄƵÂÊ£¬´Ó¶øÇó³ö¸Ã°àÓïÎÄ¡¢ÀúÊ·³É¼¨ÓÅÐãµÄÈËÊý£»
£¨2£©ÓɱíÖÐÊý¾Ý¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö»Ø¹éϵÊý£¬Ð´³öÏßÐԻع鷽³Ì£®

½â´ð ½â£º£¨1£©ÓɱíÖÐÊý¾Ý£¬ÓïÎijɼ¨ÎªÓÅÐãµÄƵÂÊÊÇ$\frac{3}{6}$=$\frac{1}{2}$£¬
ÀúÊ·³É¼¨ÎªÓÅÐãµÄƵÂÊÊÇ$\frac{2}{6}$=$\frac{1}{3}$£¬
¹Ê¸Ã°àÓïÎijɼ¨ÓÅÐãµÄÈËÊýÊÇ48¡Á$\frac{1}{2}$=24£¬
ÀúÊ·³É¼¨ÓÅÐãµÄÈËÊýΪ48¡Á$\frac{1}{3}$=16£»¡­£¨4·Ö£©
£¨2£©ÓɱíÖÐÊý¾Ý¿ÉµÃ£¬
$\overline{x}$=$\frac{1}{6}$¡Á£¨60+70+74+90+94+110£©=83£¬
$\overline{y}$=$\frac{1}{6}$¡Á£¨58+63+75+79+81+88£©=74£»¡­£¨6·Ö£©
ÇÒ$\sum_{i=1}^{6}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©=1010£¬
$\sum_{i=1}^{6}$${{£¨x}_{i}-\overline{x}£©}^{2}$=1678£»¡­£¨9·Ö£©
ËùÒԻعéϵÊýΪb=$\frac{\sum_{i=1}^{6}{£¨x}_{i}-\overline{x}£©{£¨y}_{i}-\overline{y}£©}{{\sum_{i=1}^{n}{£¨x}_{i}-\overline{x}£©}^{2}}$=$\frac{1010}{1678}$¡Ö0.6£¬
a=74-0.6¡Á83=24.2£»¡­£¨11·Ö£©
ËùÒÔyÓëxµÄÏßÐԻع鷽³ÌΪy=0.6x+24.2£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÆµÂÊÓòƵÊýµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÏßÐԻع鷽³ÌµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èôº¯Êýf£¨x£©=ax+loga£¨x2+1£©ÔÚ[1£¬2]ÉϵÄ×î´óÖµÓë×îСֵ֮ºÍΪa2+a+2£¬ÔòʵÊýaµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\sqrt{10}$B£®10C£®$\sqrt{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª¸´Êý$z=\frac{2+i}{i}$£®Çó|z|=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôac£¾bc£¬Ôòa£¾bB£®Èôa2£¾b2£¬Ôòa£¾b
C£®Èôa£¾b£¬c£¼0£¬Ôòa+c£¼b+cD£®Èô$\sqrt{a}$£¼$\sqrt{b}$£¬Ôòa£¼b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³³ÌÐò¿òͼÈçͼËùʾ£¬Èôt=7£¬ÔòÊä³öµÄֵΪ£¨¡¡¡¡£©
A£®8B£®6C£®4D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÔÚµÈÑüÖ±½Ç¡÷ABCÖУ¬AB¡ÍAC£¬BC=2£¬MΪBCÖе㣬NΪACÖе㣬DΪBC±ßÉÏÒ»¸ö¶¯µã£¬¡÷ABDÑØAD·­ÕÛʹBD¡ÍDC£¬µãAÔÚÃæBCDÉϵÄͶӰΪµãO£¬µ±µãDÔÚBCÉÏÔ˶¯Ê±£¬ÒÔÏÂ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®Ïß¶ÎNOΪ¶¨³¤B£®$|CO|¡Ê[1£¬\sqrt{2}£©$C£®¡ÏAMO+¡ÏADB£¾180¡ãD£®µãOµÄ¹ì¼£ÊÇÔ²»¡

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ¡÷ABCÖУ¬$\overrightarrow{AB}=\overrightarrow c$£¬$\overrightarrow{AC}=\overrightarrow b$£®ÈôµãDÂú×ã$\overrightarrow{CD}=2\overrightarrow{DB}$£¬Ôò$\overrightarrow{AD}$=£¨¡¡¡¡£©
A£®$\frac{2}{3}\overrightarrow b+\frac{1}{3}\overrightarrow c$B£®$\frac{1}{3}\overrightarrow b+\frac{2}{3}\overrightarrow c$C£®$\frac{2}{3}$$\overrightarrow{b}$-$\frac{1}{3}$$\overrightarrow{c}$D£®$\frac{1}{3}\overrightarrow b-\frac{2}{3}\overrightarrow c$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÔÖ±½Ç×ø±êϵԭµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ²¢ÔÚÁ½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\frac{1}{2}+tcos¦Á\\ y=tsin¦Á\end{array}$£¬£¨tΪ²ÎÊý£¬0£¼¦Á£¼¦Ð£©£¬ÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=$\frac{2cos¦È}{si{n}^{2}¦È}$£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬µ±¦Á=$\frac{¦Ð}{3}$£¬Çó|AB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýy=$\frac{lnx}{x}$Ôڵ㣨m£¬f£¨m£©£©´¦µÄÇÐÏ߯½ÐÐÓÚxÖᣬÔòʵÊým=e£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸