【题目】设椭圆![]()
的离心率为
,圆
与
轴正半轴交于点
,圆
在点
处的切线被椭圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设圆
上任意一点
处的切线交椭圆
于点
,
,试判断
是否为定值?若为定值,求出该定值;若不是定值,请说明理由.
【答案】(1)
;(2)是定值,![]()
【解析】
(1)由
,可得
,故设椭圆方程为
,可得点
在椭圆上,即可求出参数的值,从而得到椭圆方程;
(2)当过点
且与圆
相切的切线斜率不存在时,不妨设切线方程为
,
可得
.当过点
且与圆
相切的切线斜率存在时,可设切线的方程为
,
,
,由圆心到直线的距离等于半径可得
,联立直线与椭圆方程,消去
,列出韦达定理,即可表示出
,代入计算可得
,即可得到
,最后由三角形相似计算出
的值即可;
解:(1)由椭圆的离心率为
,
,
,
椭圆
的方程可设为
,
易求得
,且圆
在点
处的切线方程为
,
点
在椭圆上,
,解得
,
椭圆
的方程为
.
(2)当过点
且与圆
相切的切线斜率不存在时,不妨设切线方程为
,
由(1)知,
,
,
,
.
当过点
且与圆
相切的切线斜率存在时,可设切线的方程为
,
,
,
,即
.
联立直线和椭圆的方程得:
,
,
,
.
![]()
![]()
,
.综上所述,圆
上任意一点
处的切线交椭圆
于点
,
,都有
.
在
中,由
得,
为定值.
科目:高中数学 来源: 题型:
【题目】已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足
(2,2
)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对该班40名学生进行了问卷调查,得到了如下的
列联表:
男生 | 女生 | 总计 | |
喜爱打篮球 | 19 | 15 | 34 |
不喜爱打篮球 | 1 | 5 | 6 |
总计 | 20 | 20 | 40 |
(1)在女生不喜爱打篮球的5个个体中,随机抽取2人,求女生甲被选中的概率;
(2)判断能否在犯错误的概率不超过
的条件下认为喜爱篮球与性别有关?
附:
,其中
.
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | <>0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点
,
,直线
、
相交于点
,且它们的斜率之积为
,记动点
的轨迹为曲线
。
(1)求曲线
的方程;
(2)过点
的直线与曲线
交于
、
两点,是否存在定点
,使得直线
与
斜率之积为定值,若存在,求出
坐标;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,过点
的动圆恒与
轴相切,
为该圆的直径,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的任意直线
与曲线
交于点
,
为
的中点,过点
作
轴的平行线交曲线
于点
,
关于点
的对称点为
,除
以外,直线
与
是否有其它公共点?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设动圆
经过点
,且与圆
为圆心)相内切.
(Ⅰ)求动圆圆心
的轨迹
的方程;
(Ⅱ)设经过
的直线与轨迹
交于
、
两点,且满足
的点
也在轨迹
上,求四边形
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com