精英家教网 > 高中数学 > 题目详情
17.已知公差不为零的等差数列{an}中,a2=4,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

分析 (I)利用等差数列与等比数列的信托公司即可得出.
(II)l利用等差数列与等比数列的求和公式即可得出.

解答 解:(Ⅰ)设等差数列{an}的公差为d≠0,∵a2=4,且a1,a3,a9成等比数列.
即4-d,4+d,4+7d成等比数列,
所以有(4-d)(4+7d)=(4+d)2
即d2-2d=0,d≠0.
解得d=2,
∴an=a2+(n-2)×2=4+2n-4=2n.
(Ⅱ)由(Ⅰ)知:bn=an+${2}^{{a}_{n}}$=2n+4n
∴Tn=2(1+2+…+n)+(4+42+…+4n
=$2×\frac{n(1+n)}{2}$+$\frac{4({4}^{n}-1)}{4-1}$
=n2+n+$\frac{{4}^{n+1}-4}{3}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了3次涨停(每次上涨10%)又经历了3次跌停(每次下降10%),则该股民这只股票的盈亏情况(不考虑其他费用)为(  )
A.略有盈利B.无法判断盈亏情况
C.没有盈也没有亏损D.略有亏损

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果实数x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知在体积为12π的圆柱中,AB,CD分别是上、下底面两条不平行的直径,则三棱锥A-BCD的体积最大值等于8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知ω为正整数,若函数f(x)=sinωx+cosωx在区间(-$\frac{π}{3}$,$\frac{π}{6}$)内单调递增,则函数f(x)最小正周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知矩形ABCD与直角梯形ABEF,∠DAF=∠FAB=90°,点G为DF的中点,AF=EF=$\frac{1}{2}AB=\sqrt{3}$,P在线段CD上运动.
(1)证明:BF∥平面GAC;
(2)当P运动到CD的中点位置时,PG与PB长度之和最小,求二面角P-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sinθ=$\frac{1}{3}$,θ∈(0,$\frac{π}{2}$),则tan2θ=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知z=(m2-1)+mi在复平面内对应的点在第二象限,则实数m的取值范围是(  )
A.(-1,1)B.(-1,0)C.(0,1)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.掷一颗骰子一次,设事件A=“出现奇数点”,事件B=“出现3点或4点”,则事件A,B的关系是(  )
A.互斥但不相互独立B.相互独立但不互斥
C.互斥且相互独立D.既不相互独立也不互斥

查看答案和解析>>

同步练习册答案