精英家教网 > 高中数学 > 题目详情
13.求点P(m,n)关于直线x+y+b=0对称的点的坐标.

分析 设出对称点的坐标列出方程组求解即可.

解答 解:点P(m,n)关于直线x+y+b=0对称的点为(x,y).
可得:$\left\{\begin{array}{l}\frac{n-y}{m-x}=1\\ \frac{x+m}{2}+\frac{y+n}{2}+b=0\end{array}\right.$,即:$\left\{\begin{array}{l}x-y+n-m=0\\ x+y+m+n+2b=0\end{array}\right.$
解得:$\left\{\begin{array}{l}x=-n-b\\ y=-m-b\end{array}\right.$,
点P(m,n)关于直线x+y+b=0对称的点的坐标:(-n-b,-m-b).

点评 本题考查了点关于直线的对称点的求法,对称知识的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.随着社会的发展,汽车正逐步成为人们的代步工具,超速造成的交通事故正逐年上升,交警在处理交通事故的时候多利用刹车痕迹的长度来判断车辆是否超速.已知某种汽车的刹车距离S(米)和汽车车速v(千米/小时)有如下关系:$S=av+\frac{1}{180}{v^2}$,若该种汽车的速度为30千米/小时,则刹车距离为6.5米.在一条限速80千米/小时的道路上发生了一起交通事故,交警测得该种车的刹车距离大于49.5米.
(Ⅰ)当汽车时速为60千米/小时,其刹车距离为多少?
(Ⅱ)该车在道路上是否超速行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在三棱台A1B1C1-ABC中,点D在A1B1上,且AA1∥BD,点M是△A1B1C1内(含边界)的一个动点,且有平面BDM∥平面A1C,则动点M的轨迹是(  )
A.平面B.直线
C.线段,但只含1个端点D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a,b,c,d满足$\frac{2+5alna}{2{a}^{2}-ab}$=$\frac{{c}^{2}-mc}{d-4}$=1,在直角坐标系中,点(a,b)和(c,d)的轨迹方程分别为y=f(x),y=g(x),若?x1∈(0,1),?x2∈[1,2],郡有f(x1)≥g(x2)成立,则实数m的最小值为(  )
A.$\frac{11-5ln2}{2}$B.2C.8-5ln2D.7-5ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:圆C1,C2相交,且AB分别切圆C1,C2于A,B两点,求证:圆C1,C2的公共弦所在直线平分线段AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设三棱锥的三条侧棱两两互相垂直,且长度分别为2,2$\sqrt{3}$,4,则其外接球的表面积为(  )
A.48πB.32πC.20πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$=(3cos2x-3sin2x,1),$\overrightarrow{b}$=(1,-2$\sqrt{3}$sinxcosx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的周期;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sin(x+$\frac{π}{6}$)+cos(x+$\frac{π}{6}$)的值域是(  )
A.[-2,2]B.[-1,1]C.[-$\sqrt{2}$,$\sqrt{2}$]D.[-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合M={x|-2<x<3},P={x|x≤-1},那么“x∈M或x∈P”是“x∈M∩P”的(  )
A.. 必要不充分条件B.充分不必要条件
C..充要条件D.. 既不充分也不必要条件

查看答案和解析>>

同步练习册答案