精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
4
x4+
2
3
x3+ax2-2x-2在区间[-1,1]上单调递减,在区间[1,2]上单调递增.
(1)求实数a的值;
(2)若关于x的方程f(2x)=m有三个不同的实数解,求实数m的取值范围;
(3)若函数y=log2[f(x)+p]的图象与x轴无交点,求实数p的取值范围.
分析:(1)由题意可得,x=1取得极小值从而有f′(1)=0,代入可求a;
(2)由关于x的方程f(2x)=m有三个不同实数解,?关于t的方程f(t)=m在t∈(0,+∞)上有三个不同实数解,?y=f(t)的图象与直线y=m在t∈(0,+∞)上有三个不同的交点;
(3)根据函数y=log2[f(x)+p]的图象与坐标轴无交点,则f(x)+p>0,f(x)+p≠1,构造关于P的不等式组,解不等式组求出实数p的取值范围.
解答:解:(1)由函数f(x)=
1
4
x4+
2
3
x3+ax2-2x-2在区间[-1,1]上单调递减,在区间[1,2]上单调递增,
故x=1取得极小值,∴f′(1)=0
∵f′(x)=x3+2x2+2ax-2
∴f′(1)=1+2+2a-2=0,解得a=-
1
2

(2)由(1)知f(x)=
1
4
x4+
2
3
x3-
1
2
x2-2x-2,
∴f′(x)=x3+2x2-x-2=(x+1)(x-1)(x+2),
令f′(x)=0得x=-1,x=1,x=-2
x (-∞,-2) -2 (-2,-1) -1 (-1,1) 1 (1,+∞)
f'(x) - 0 + 0 - 0 +
f(x) 极小值 极大值 极小值
所以函数f(x)有极小值f(1)=-
43
12
,f(-2)=-
4
3
,极大值f(-1)=-
11
12

因关于x的方程f(2x)=m有三个不同实数解,令2x=t(t>0)
即关于t的方程f(t)=m在t∈(0,+∞)上有三个不同实数解,
即y=f(t)的图象与直线y=m在t∈(0,+∞)上有三个不同的交点.
而y=f(t)的图象与y=f(x)的图象一致.
又f(0)=-2由图可知-
4
3
<m<-
11
12

(3)∵函数y=log2[f(x)+p]的真数部分为f(x)+p,
∴f(x)+p>0,
要使函数y=log2[f(x)+p]的图象与x轴无交点,只有f(x)+p≠1,
由(2)知,f(x)的最大值为f(-1)=-
5
12
,即f(x)≤-
5
12

所以f(x)+p≤p-
5
12

,要使f(x)+p≠1,只有p-
5
12
<1,才能满足题意,解之得,p<
17
12

又由f(x)+p>0,即p>
5
12

故p的范围是
5
12
<p<
17
12
点评:本题主要考查了函数的导数与函数单调性及函数的极值之间的关系的应用,函数与方程之间的相互转化的思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案