精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数的底数.

1)求不等式的解集;

2)若函数有两个极值点()(若是函数的极大值或极小值,则m为函数的极值点,极大值点与极小值点统称为极值点).

①求a的取值范围;

②证明:.

【答案】1.(2)①;②证明见解析

【解析】

1)不等式变形为,令,利用导数研究的单调性,结合,可得不等式的解集;

(2)①求出导函数,再由的导数研究的单调性,得的正负,从而得的单调性,由的极小值小于0及零点存在定理可得的范围,②由极值点定义知的极大值点,是极小值点,从而有

,则为偶函数,利用导数研究的单调性得,从而可证题设结论.

1)由

,∴,令

时,递减;当时,递增

注意到,结合单调性知不等式的解集为

2

,由题意知上有两个不等的实根

,令

时,递减;当时,递增,

要使有两个零点,则,此时注意到

,∴上各有一个零点,满足题意,故的取值范围为

②由2个极值点,且

满足且由①知

上单调递增,在上单调递减,在上单调递增

的极大值点,是极小值点

,则为偶函数

上单调递增

时,,∴上单调递增

为偶函数,∴,∴

从而

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)当时,对于任意,总存在,使得,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)如图,在多面体中,底面是边长为的的菱形, ,四边形是矩形,平面平面分别是的中点.

)求证:平面平面

)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数).

1)求曲线的参数方程与直线的普通方程;

2)设点过为曲线上的动点,点和点为直线上的点,且满足为等边三角形,求边长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)若不等式恒成立,求的最小值(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx)=Asinωx)(A0,ω0,0φπ)的部分图象如图所示,又函数.

1)求函数的单调减区间;

2)设△ABC的内角A,B,C的对边分别为a,b,c,又,且锐角C满足,若sinB2sinA,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;

(Ⅱ)若该市政府拟采取分层抽样的方法在用水量吨数为之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设为用水量吨数在中的获奖的家庭数,为用水量吨数在中的获奖家庭数,记随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲,乙两地某月时的气温,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的中位数小于乙地该月时的气温的中位数;④甲地该月时的气温的中位数大于乙地该月时的气温的中位数.其中根据茎叶图能得到的正确结论的编号为( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了释放学生压力,某校高三年级一班进行了一个投篮游戏,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置上,甲先投,每人投一次篮,两人有人命中,命中者得分,未命中者得分;两人都命中或都未命中,两人均得.设甲每次投篮命中的概率为,乙每次投篮命中的概率为,且各次投篮互不影响.

1)经过轮投篮,记甲的得分为,求的分布列及期望;

2)若经过轮投篮,用表示第轮投篮后,甲的累计得分低于乙的累计得分的概率.

①求

②规定,经过计算机模拟计算可得,请根据①中值求出的值,并由此求出数列的通项公式.

查看答案和解析>>

同步练习册答案