精英家教网 > 高中数学 > 题目详情
7.已知i为虚数单位,复数z满足(1+$\sqrt{3}$i)2z=1-i3,则|z|为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{{\sqrt{2}}}{16}$

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:∵(1+$\sqrt{3}$i)2z=1-i3
∴z=$\frac{1+i}{-2+2\sqrt{3}i}$,
∴|z|=$\frac{|1+i|}{|-2+2\sqrt{3}i|}$=$\frac{\sqrt{2}}{\sqrt{{2}^{2}+(2\sqrt{3})^{2}}}$=$\frac{\sqrt{2}}{4}$.
故选:C.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{6}$,$\frac{π}{4}$],记f(x)=$\frac{3}{2}$|$\overrightarrow{a}$+$\overrightarrow{b}$|-$\overrightarrow{a}$•$\overrightarrow{b}$,则f(x)的最小值为(  )
A.2B.$\frac{17}{8}$C.$\frac{{3\sqrt{3}-1}}{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,F为C的右焦点,A(0,-2),直线FA的斜率为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求C的方程;
(Ⅱ)设E(x0,y0)是C上一点,从坐标原点O向圆E:(x-x02+(y-y02=3作两条切线,分别与C交于P,Q两点,直线OP,OQ的斜率分别是k1,k2,求证:
(i)k1•k2=-$\frac{1}{3}$;
(ii)|OP|2+|OQ|2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5,数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前2016项的和为-$\frac{2016}{4031}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义在R内的以6为周期的偶函数,若f(1)<1,f(11)=$\frac{2a-3}{a+1}$,则实数a的取值范围为(  )
A.(-1,4)B.(-2,1)C.(-1,O)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知cos(π+α)=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),则tan($\frac{π}{4}$-α)=(  )
A.-$\frac{1}{7}$B.-7C.$\frac{1}{7}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知曲线f(x)=ex-$\frac{1}{e^x}$与直线y=kx有且仅有一个公共点,则实数k的最大值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若双曲线C:mx2+y2=1的离心率为2k(k>0),其中k为双曲线C的一条渐近线的斜率,则m的值为(  )
A.-$\frac{1}{3}$B.$\frac{-1-\sqrt{17}}{8}$C.-3D.$\frac{-1±\sqrt{17}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点P在曲线y=$\frac{1}{{e}^{x}+1}$(其中e为自然对数的底数)上运动,则曲线在点P处的切线斜率最小时的切线方程为y=-$\frac{1}{4}$x+$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案