精英家教网 > 高中数学 > 题目详情
12.已知cos(π+α)=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),则tan($\frac{π}{4}$-α)=(  )
A.-$\frac{1}{7}$B.-7C.$\frac{1}{7}$D.7

分析 利用同角三角函数的基本关系求得tanα的值,再利用两角差的正切公式求得tan($\frac{π}{4}$-α)=$\frac{1-tanα}{1+tanα}$的值.

解答 解:∵cos(π+α)=-cosα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),∴cosα=-$\frac{3}{5}$,
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{4}{5}$,∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,则tan($\frac{π}{4}$-α)=$\frac{1-tanα}{1+tanα}$=-7,
故选:B.

点评 本题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,若a2+a8=10,则a1+a3+a5+a7+a9的值是(  )
A.10B.15C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}满足:a3=-9,a12=9,设{an}的前n项和为Sn,则使得Sn最小的序号n的值为(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i为虚数单位,复数z满足(1+$\sqrt{3}$i)2z=1-i3,则|z|为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{{\sqrt{2}}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(sin(x+φ),2),$\overrightarrow{b}$=(1,cos(x+φ)),函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$),则f(x)的最小正周期是(  )
A.1B.2C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点P(-$\frac{π}{6}$,1)是函数f(x)=sin(ωx+φ)+m(ω>0,|φ|<$\frac{π}{2}$)的图象的一个对称中心,且点P到该图象的对称轴的距离的最小值为$\frac{π}{4}$.
①f(x)的最小正周期是π;  
②f(x)的值域为[0,2];  
③f(x)的初相φ为$\frac{π}{3}$        
④f(x)在[$\frac{5π}{3}$,2π]上单调递增.
以上说法正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的内角A,B,C的对边分别为a,b,c,A=$\frac{π}{6}$.
(1)若C=$\frac{7π}{12}$,求$\frac{b}{a}$;
(2)若B=$\frac{2π}{3}$,b=2$\sqrt{3}$,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知可导函数f(x)(x∈R)的导函数f′(x)满足f(x)<f′(x),则不等式f(x)≥f(2016)ex-2016的解集是[2016,+∞).

查看答案和解析>>

同步练习册答案