精英家教网 > 高中数学 > 题目详情
焦点在上的抛物线的标准方程为(      )
A.B.C.D.
B
由题意知,抛物线的焦点坐标为,故其标准方程为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)已知直线>0交抛物线C:=2>0于A、B两点,M是线段AB的中点,过M作轴的垂线交C于点N.

(1)若直线过抛物线C的焦点,且垂直于抛物线C的对称轴,试用表示|AB|;
(2)证明:过点N且与AB平行的直线和抛物线C有且仅有一个公共点;
(3)是否存在实数,使=0.若存在,求出的所有值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,设点(1,0),直线:,点在直线上移动,是线段轴的交点, .
(Ⅰ)求动点的轨迹的方程;
(Ⅱ) 记的轨迹的方程为,过点作两条互相垂直的曲线的弦,设 的中点分别为.求证:直线必过定点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 设抛物线的准线与轴交点为,过点 作直线交抛物线与不同的点两点.
(1)求线段中点的轨迹方程;
(2)若线段的垂直平分线交抛物线对称轴与,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点在x轴上,直线y=2x+1被抛物线截得的线段长为,求此抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别为轴、轴上的点,且,动点满足:.
(1)求动点的轨迹的方程;
(2)过定点任意作一条直线与曲线交与不同的两点,问在轴上是否存在一定点,使得直线的倾斜角互补?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设P1P2是抛物线x2=y的弦,P1P2的中垂线l的方程为y=-x+3,则P1P2所在直线方程为_________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线的顶点在坐标原点,焦点是椭圆的一个焦点,则此抛物线的焦点到准线的距离是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,过定点作直线与抛物线相交于两点.若点是点关于坐标原点的对称点,则面积的最小值为        

查看答案和解析>>

同步练习册答案