精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{{x}^{2}+ax+1}{{x}^{2}+1}$(a≠0),(x∈[-1,1])的最大值与最小值分别是M,m,则 M+m=2.

分析 f(x)=$\frac{{x}^{2}+ax+1}{{x}^{2}+1}$=1+$\frac{ax}{{x}^{2}+1}$.令g(x)=$\frac{ax}{{x}^{2}+1}$,则g(-x)=-g(x),即函数是奇函数,即可得出结论.

解答 解:f(x)=$\frac{{x}^{2}+ax+1}{{x}^{2}+1}$=1+$\frac{ax}{{x}^{2}+1}$.
令g(x)=$\frac{ax}{{x}^{2}+1}$,则g(-x)=-g(x),即函数是奇函数,
∵函数f(x)=$\frac{{x}^{2}+ax+1}{{x}^{2}+1}$(a≠0),(x∈[-1,1])的最大值与最小值分别是M,m,
∴M+m=2.
故答案为:2.

点评 本题考查函数的最大值与最小值,考查函数的奇偶性,正确化简函数,理解奇函数的性质是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0.
(1)求证:直线l与圆C相交;
(2)计算直线l被圆C截得的最短的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(|x|+$\frac{π}{3}$)(x∈R),则f(x)(  )
A.在区间[-$\frac{π}{3}$,0]上是增函数B.在区间[0,$\frac{π}{3}$]上是减函数
C.在区间[-$\frac{π}{6}$,0]上是减函数D.在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知($\sqrt{x}$-$\frac{1}{{x}^{2}}$)n的展开式的第5项与第3项的二项式系数之比为14:3.求展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简:$\sqrt{(x-2)^{2}}$+$\root{6}{(x+2)^{6}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x∈(7,9),则$\sqrt{(x-7)^{2}}$+$\sqrt{(x-9)^{2}}$=(  )
A.2B.2x-16C.-2D.16-2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,直线m:3x+4y-4=0与以O1、O2、…On、…为圆心,且依次外切的半圆都相切,其中半圆O1与y轴相切,半圆圆心都在x轴的正半轴上,半径分别为r1、r2、…、rn、…,求所有半圆弧长的总和L.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=$\sqrt{2{x}^{2}-3x+4}$+$\sqrt{{x}^{2}-2x}$,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数的定义域.
(1)f(x)=$\frac{1}{x}$+$\sqrt{3-{x}^{2}}$;
(2)f(x)=$\frac{2+3x}{6x-1}$; 
(3)f(x)=$\sqrt{{x}^{2}}$;
(4)f(x)=$\left\{\begin{array}{l}{x+2,x<0}\\{0,x=0}\\{{x}^{2},x>0}\end{array}\right.$.

查看答案和解析>>

同步练习册答案