精英家教网 > 高中数学 > 题目详情
(1)已知二次函数f(x)满足条件f(0)=1及f(x+1)-f(x)=2x,求f(x);
(2)若f(x)满足关系式f(x)+2f(
1
x
)=3x,求f(x)的解析式;
(3)f(x+1)=x2+4x+1,求f(x)的解析式.
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:(1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得
(2)由f(x)+2f(
1
x
)=3x①,得到f(
1
x
)+2f(x)=3
1
x
②,由①②构成方程组解得即可.
(3)令t=x+1,则x=t-1,利用换元法,可得函数解析式.
解答: 解:(1)设y=f(x)=ax2+bx+c
∵f(0)=1,f(x+1)-f(x)=2x
∴c=1;a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x
∴∴2a=2,a+b=0
解得a=1,b=-1
函数f(x)的表达式为f(x)=x2-x+1
(2):f(x)+2f(
1
x
)=3x①,
令x=
1
x
,则
f(
1
x
)+2f(x)=3
1
x
②,
由①②构成方程组解得,
函数f(x)的表达式为f(x)=
2
x
-x,
(3)解:令t=x+1,
则x=t-1,
∵f(x+1)=x2+4x+1
∴f(t)=(t-1)2+4(t-1)+1=t2+2t-2,
∴f(x)=x2+2x-2.
点评:本题考查利用待定系数法,方程组法,换元法求函数的解析式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的是
 
(将所有正确的序号填在横线上).
①直线l1:ax+y=3,l2:x+by-c=0,则l1∥l2的必要条件是ab=1;
②方程x2+mx+1=0有两个负根的充要条件是m>0;
③命题“若|a|=|b|,则a=b”为真命题;
④“x<0”是“x2-3x+2>0”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等实根.
(1)求函数f(x)的解析式;
(2)当x∈[1,2]时,求f(x)的值域;
(3)若F(x)=f(x)-f(-x),试判断F(x)的奇偶性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a>0,b,c∈R),F(x)=
f(x),x≥0
-f(-x),x<0

(1)若f(x)的最小值为f(-1)=0,且f(0)=1,求F(-1)+f(2)的值;
(2)若a=1,c=0,且|f(x)|≤1对x∈[0,1]恒成立,求b的取值范围;
(3)若a=1,b=-2,c=0,且y=F(x)与y=-t的图象在闭区间[-2,t]上恰有一个公共点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(
x
+1)=x+2
x
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

由动点P向圆x2+y2=1引两条切线PA,PB,切点分别为A,B,∠APB=60°,则P(x,y)中x,y满足的关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x+2
x-1
的单调减区间和图象的对称中心分别为(  )
A、(-∞,0),(0,+∞),(1,1)
B、(-∞,-1),(-1,+∞),(1,0)
C、(-∞,1),(1,+∞),(1,0)
D、(-∞,1),(1,+∞),(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b
2x+1+2
是奇函数.
(1)求b的值;
(2)用定义法证明函数f(x)在R上是减函数;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d.当点P运动时,d恒等于点P的横坐标与18之和,求点P的轨迹C.

查看答案和解析>>

同步练习册答案