精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,直线C1的参数方程为
x=1+t
y=2+t
(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为ρ=-2cosθ+2
3
sinθ.
(Ⅰ)求直线C1的普通方程和圆C2的圆心的极坐标;
(Ⅱ)设直线C1和圆C2的交点为A,B,求弦AB的长.
考点:参数方程化成普通方程
专题:
分析:(Ⅰ)把参数方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标.
(Ⅱ)由(Ⅰ)求得(-1,
3
)到直线x-y+1=0 的距离d,再利用弦长公式求得弦长.
解答:解:(Ⅰ)由C1的参数方程消去参数t得普通方程为 x-y+1=0,
圆C2的直角坐标方程(x+1)2+(y-
3
)
2
=4,
所以圆心的直角坐标为(-1,
3
),
所以圆心的一个极坐标为(2,
π
3
).
(Ⅱ)由(Ⅰ)知(-1,
3
)到直线x-y+1=0 的距离 d=
|-1+
3
+1|
2
=
6
2

所以AB=2
4-
6
4
=
10
点评:本题主要考查把参数方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

参数方程
x=
4
cosθ
y=3tanθ
(θ为参数)化为普通方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为
x=1+tcos135°
y=1+tsin135°
(t为参数),曲线C的极坐标方程为p=2cosθ,则t与C公共点的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,Ox为极点,点A(2,
π
2
),B(2
2
π
4
).
(Ⅰ)求经过O,A,B的圆C的极坐标方程;
(Ⅱ)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆D的参数方程为
x=-1+acosθ
y=-1+asinθ
(θ是参数,a为半径),若圆C与圆D相切,求半径a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρ=4cosθ,直线l的参数方程为
x=1+tcos
π
6
y=-
3
+tsin
π
6
(t为参数).
(Ⅰ)分别求出曲线C和直线l的直角坐标方程;
(Ⅱ)若点P在曲线C上,且P到直线l的距离为1,求满足这样条件的点P的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为:
x=-2+tcosθ
y=tsinθ
(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ
(Ⅰ)求曲线C的普通方程
(Ⅱ)当α=
π
4
时,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程是
x=
2
2
t
y=
2
2
t+4
2
(t为参数);以O为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=2cos(θ+
π
4
).
(Ⅰ)写出直线l的普通方程与圆C的直角坐标方程;
(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ex-
1
2
(x<0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是(  )
A、(-∞,
1
e
B、(-∞,
e
C、(-
1
e
e
D、(-
e
1
e

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
3x+3-x
3x-3-x
的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案