精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)的零点与g(x)=4x+2x﹣2的零点之差的绝对值不超过0.25,则f(x)可以是(
A.f(x)=4x﹣1
B.f(x)=(x﹣1)2
C.f(x)=ex﹣1
D.f(x)=ln(x﹣

【答案】A
【解析】解:∵g(x)=4x+2x﹣2在R上连续,且g( )= + ﹣2= <0,g( )=2+1﹣2=1>0.
设g(x)=4x+2x﹣2的零点为x0 , 则 <x0
0<x0 ,∴|x0 |<
又f(x)=4x﹣1零点为x= ;f(x)=(x﹣1)2零点为x=1;
f(x)=ex﹣1零点为x=0;f(x)=ln(x﹣ )零点为x=
故选A.
【考点精析】关于本题考查的函数的零点,需要了解函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且过点.若点在椭圆上,则点称为点的一个“椭点”.

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于 两点,且 两点的“椭点”分别为 ,以为直径的圆经过坐标原点,试求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在(0,+∞)单调递增的函数是(
A.y=﹣x2
B.y=2|x|
C.y=| |
D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为25x万元(国家规定大货车的报废年限为10年).

1)大货车运输到第几年年底,该车运输累计收入超过总支出?

2)在第几年年底将大货车出售,能使小王获得的年平均利润最大(利润=累计收入+销售收入-总支出)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,p,q均为正数,且 ,则(
A.m>p>q
B.p>m>q
C.m>q>p
D.p>q>m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C: ,过点的动直线l与C相交于两点,抛物线C在点A和点B处的切线相交于点Q.

(Ⅰ)写出抛物线的焦点坐标和准线方程;

(Ⅱ)求证:点Q在直线上;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|a﹣1≤x≤a+1},集合B={x|﹣1≤x≤5}.
(1)若a=5,求A∩B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=log (x2﹣2x)的单调递增区间是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

同步练习册答案