精英家教网 > 高中数学 > 题目详情
17.已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(1)求数列{an}的通项公式;
(2)设Sn为数列{an}的前n项和,bn=$\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

分析 (1)根据等比数列的通项公式求出首项和公比即可,求数列{an}的通项公式;
(2)求出bn=$\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$,利用裂项法即可求数列{bn}的前n项和Tn

解答 解:(1)∵数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
∴a1+a4=9,a1a4=a2a3=8.
解得a1=1,a4=8或a1=8,a4=1(舍),
解得q=2,即数列{an}的通项公式an=2n-1
(2)Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=2n-1,
∴bn=$\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$=$\frac{{S}_{n+1}-{S}_{n}}{{S}_{n}{S}_{n+1}}$=$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n+1}}$,
∴数列{bn}的前n项和Tn=$\frac{1}{{S}_{1}}$$-\frac{1}{{S}_{2}}+\frac{1}{{S}_{2}}-\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n+1}}$=$\frac{1}{{S}_{1}}$-$\frac{1}{{S}_{n+1}}$=1-$\frac{1}{{2}^{n+1}-1}$.

点评 本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团未参加书法社团
参加演讲社团85
未参加演讲社团230
(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;
(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1-35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.
(1)求$\frac{sinB}{sinC}$;
(2)若AD=1,DC=$\frac{\sqrt{2}}{2}$,求BD和AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图(算法流程图),输出的n为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin($\frac{π}{6}$x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为(  )
A.5B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若为a实数,且$\frac{2+ai}{1+i}$=3+i,则a=(  )
A.-4B.-3C.3D.4

查看答案和解析>>

同步练习册答案