精英家教网 > 高中数学 > 题目详情

已知“命题p:?x∈R,使得ax2+2x+1<0成立”为真命题,则实数a满足


  1. A.
    0,1)
  2. B.
    (-∞,1)
  3. C.
    1,+∞)
  4. D.
    (-∞,1]
B
分析:q为真命题,通过对二次项系数的讨论求出a的范围化简命题.
解答:由题意,q为命题.(1)当a=0时成立;
(2)a<0时恒成立;
(3)a>0时,有,解得0<a<1
综上,a<1,
故选B.
点评:本题考查命题的真假判断与应用,解决二次函数注意对二次项系数的讨论、复合命题的真假与构成其简单命题的真假关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:?x∈R,使x2-x+a=0;命题Q:函数y=
ax-1
ax2+ax+1
的定义域为R.
(1)若命题P为真,求实数a的取值范围;
(2)若命题Q为真,求实数a的取值范围;
(3)如果P∧Q为假,P∨Q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2x2+2x+
1
2
<0
;命题q:?x∈R,sinx-cosx=
2
.则下列判断正确的是(  )
A、p是真命题
B、q是假命题
C、¬P是假命题
D、¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x=2k+1(k∈Z),命题q:x=4k-1(k∈Z),则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2+2ax+a≤0,则命题p的否定是
?x?R,x2+2ax+a>0
?x?R,x2+2ax+a>0
;若命题p为假命题,则实数a的取值范围是
(0,1)
(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使2x2+(k-1)x+
1
2
<0;命题q:方程
x2
9-k
-
y2
k-1
=1
表示双曲线.若p∧q为真命题,求实数k的取值范围.

查看答案和解析>>

同步练习册答案