【题目】某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据:
![]()
![]()
(1) 若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2列联表.
![]()
(2)根据(1)中的2×2列联表,在犯错误的概率不超过0.01的前提下,能否认为脚的大小与身高之间有关系?
,
![]()
科目:高中数学 来源: 题型:
【题目】一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为__________.
【答案】![]()
【解析】
如图,不妨设
在
处,
,
则有
由
该直角三角形斜边
故答案为
.
【题型】填空题
【结束】
16
【题目】已知函数f(x)=
,g(x)=
,若函数y=f(g(x))+a有三个不同的零点x1,x2,x3(其中x1<x2<x3),则2g(x1)+g(x2)+g(x3)的取值范围为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次考试共有10道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有7道题的答案是正确的,其余题中:有一道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.试求出该考生:
(Ⅰ)得50分的概率;
(Ⅱ)所得分数
的数学期望(用小数表示,精确到0.01k^s*5#u)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(a>0,且a≠1)的图象上关于y轴对称的点至少有5对,则实数a的取值范围是( )
A.(0,
)
B.(
,1)
C.(
,1)
D.(0,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:
| 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]()
由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是( )
A. 没有充足的理由认为课外阅读量大与作文成绩优秀有关
B. 有0.5%的把握认为课外阅读量大与作文成绩优秀有关
C. 有99.9%的把握认为课外阅读量大与作文成绩优秀有关
D. 有99.5%的把握认为课外阅读量大与作文成绩优秀有关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为
,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为:
(t为参数).
(1)求圆C和直线l的极坐标方程;
(2)点P的极坐标为(1,
),直线l与圆C相交于A,B,求|PA|+|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos2ωx+2
sinωxcosωx﹣1,且f(x)的周期为2.
(Ⅰ)当
时,求f(x)的最值;
(Ⅱ)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( ) ![]()
A.54
B.162
C.54+18 ![]()
D.162+18 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方向向量为v=(1,
)的直线l过点(0,﹣2
)和椭圆C:
=1(a>b>0)的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点E(﹣2,0)的直线m交椭圆C于点M、N,满足
=
.cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com