精英家教网 > 高中数学 > 题目详情

【题目】已知点为抛物线上的两点,为坐标原点,且,则的面积的最小值为( )

A. 16 B. 8 C. 4 D. 2

【答案】A

【解析】

方法一

第一步A,B点设出来

第二步,根据向量垂直的等式关系推导出参数间的关系;

第三步,根据题意列出面积方程

第四步利用均值不等式进行求最小值.

方法二:

由对称性,当的面积取得最小值时,两点关于轴对称,根据对称关系,直线的倾斜角为,直线的方程为,将其代入抛物线方程

解析:设,则,则解得根据三角形的面积公式,

当且仅当时,取最小值.

的面积的最小值为16.

解法2:由对称性,当的面积取得最小值时,两点关于轴对称,又因为,所以直线的倾斜角为,直线的方程为,将其代入抛物线方程,解得

所以,此时

答案选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数yf(x)为偶函数,求k 的值;

2)求函数yf(x)在区间[04]上的最大值;

3)若方程f(x)=0 有且仅有一个根,求实数k 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年11月、12月全国大范围流感爆发,为研究昼夜温差大小与患感冒人数多少之间的关系,一兴趣小组抄录了某医院11月到12月间的连续6个星期的昼夜温差情况与因患感冒而就诊的人数得到如下资料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

昼夜温差x(°C)

10

11

13

12

8

6

就诊人数y(个)

22

25

29

26

16

12

该兴趣小组确定的研究方案是先从这六组数据中选取2组用剩下的4组数据求线性回归方程再用被选取的2组数据进行检验

(Ⅰ)求选取的2组数据恰好是相邻两个星期的概率;

(Ⅱ)若选取的是第一周与第六周的两组数据请根据第二周到第五周的4组数据,求出关于的线性回归方程

(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式: )

参考数据: 1092, 498

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组进行“野岛生存”实践活动,他们设置了个取水敞口箱.其中个采用种取水法,个采用种取水法.如图甲为种方法一个夜晚操作一次个水箱积取淡水量频率分布直方图,图乙为种方法一个夜晚操作一次个水箱积取淡水量频率分布直方图.

(1)设两种取水方法互不影响,设表示事件“法取水箱水量不低于法取水箱水量不低于”,以样本估计总体,以频率分布直方图中的频率为概率,估计的概率;

(2)填写下面列联表,并判断是否有的把握认为箱积水量与取水方法有关.

箱积水量

箱积水量

箱数总计

箱数总计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求函数的解析式及其定义域;

2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为净化新安江水域的水质,市环保局于2017年底在新安江水域投入一些蒲草,这些蒲草在水中的蔓延速度越来越快,2018年二月底测得蒲草覆盖面积为,2018年三月底测得覆盖面积为,蒲草覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型可供选择.

(Ⅰ)分别求出两个函数模型的解析式;

(Ⅱ)若市环保局在2017年年底投放了的蒲草,试判断哪个函数模型更合适?并说明理由;

(Ⅲ)利用(Ⅱ)的结论,求蒲草覆盖面积达到的最小月份.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为2的正方形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△ADE,使得平面ADE⊥平面BCDEF为线段AC的中点.

(Ⅰ)求证:BF∥平面ADE

(Ⅱ)求直线AB与平面ADE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为,数列的前项和为,下列说法错误的是( )

A. 有最大值,则也有最大值

B. 有最大值,则也有最大值

C. 若数列不单调,则数列也不单调

D. 若数列不单调,则数列也不单调

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费元,未租出的车每辆每月需要维护费.

1)当每辆车的月租金定为元时,能租出多少辆车?

2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

同步练习册答案