【题目】如图,在三棱柱
中,侧棱
底面
,底面
是正三角形,![]()
![]()
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
【答案】(1)证明见解析,(2) ![]()
【解析】
(1) 在线段
上取一点
.使
.连结
.利用线段成比例定理可以证明出线线平行以及数量关系,根据平行四边形的判定定理和性质、线面平行的判定定理可以证明出本问;
(2) 以
为坐标原点,
所在直线分别为
轴建立如图所示的空间直角坐标系,利用向量法可以求出直线
与平面
所成角的正弦值.
(1)证明:在线段
上取一点
.使
.连结
.
在
中.因为
,
所以
,
所以
,
所以,
且
,
因为
.
所以
,
![]()
所以
且
,
故四边形
为平行四边形,所以
,
又
平面
平面
,
所以
平面
.
(2)以
为坐标原点,
所在直线分别为
轴建立如图所示的空间直角坐标系,
因为底面
是正三角形,![]()
![]()
,
所以点
,
则
,
设平面
的法向量为
.
![]()
由
,
令
.得平面
的一个法向量为
,
又
,
设直线
与平面BCF所成角的大小为
.
则
,
所以直线
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】每个国家身高正常的标准是不一样的,不同年龄、不同种族、不同地区身高都是有差异的,我们国家会定期进行0~18岁孩子身高体重全国性调查,然后根据这个调查结果制定出相应的各个年龄段的身高标准.一般测量出一个孩子的身高,对照一下身高体重表,如果在平均值标准差以内的就说明你的孩子身高是正常的,否则说明你的孩子可能身高偏矮或偏高了.根据科学研究0~18岁的孩子的身高服从正态分布
.在某城市随机抽取100名18岁男大学生得到其身高(
)的数据.
(1)记
表示随机抽取的100名18岁男大学生身高的数据在
之内的人数,求
及
的数学期望.
(2)若18岁男大学生身高的数据在
之内,则说明孩子的身高是正常的.
(i)请用统计学的知识分析该市18岁男大学生身高的情况;
(ii)下面是抽取的100名18岁男大学生中20名大学生身高(
)的数据:
1.65 | 1.62 | 1.74 | 1.82 | 1.68 | 1.72 | 1.75 | 1.66 | 1.73 | 1.67 |
1.86 | 1.81 | 1.74 | 1.69 | 1.76 | 1.77 | 1.69 | 1.78 | 1.63 | 1.68 |
经计算得
,
,其中
为抽取的第
个学生的身高,
.用样本平均数
作为
的估计值,用样本标准差
作为
的估计,剔除
之外的数据,用剩下的数据估计
和
的值.(精确到0.01)
附:若随机变量
服从正态分布
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( )
A.1150B.1380C.1610D.1860
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高(不超过三次)的多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即:
,式中
,
,
,
依次为几何体的高,下底面积,上底面积,中截面面积.如图,现将曲线
与直线
及
轴围成的封闭图形绕
轴旋转一周得到一个几何体.利用辛卜生公式可求得该几何体的体积
( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由
个不同的数构成的数列
中,若
时,
(即后面的项
小于前面项
),则称
与
构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为
;同理,等比数列
的逆序数为
.
(1)计算数列
的逆序数;
(2)计算数列
(
)的逆序数;
(3) 已知数列
的逆序数为
,求
的逆序数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中真命题是
![]()
A. 同垂直于一直线的两条直线互相平行
B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱
C. 过空间任一点与两条异面直线都垂直的直线有且只有一条
D. 过球面上任意两点的大圆有且只有一个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,已知
,顶点P在平面ABC上的射影为
的外接圆圆心.
![]()
(1)证明:平面
平面ABC;
(2)若点M在棱PA上,
,且二面角P-BC-M的余弦值为
,试求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源于中国古代数学家祖冲之的圆周率。公元263年,中国数学家刘徽用“割圆术”计算圆周率,计算到圆内接3072边形的面积,得到的圆周率是
.公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率
和约率
。大约在公元530年,印度数学大师阿耶波多算出圆周率约为
(
).在这4个圆周率的近似值中,最接近真实值的是( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com