2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=cos¦Á\\ y=1+sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£¬¦Á¡ÊR£©£¬ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏß${C_2}£º¦Ñsin£¨¦È-\frac{¦Ð}{4}£©=\sqrt{2}$£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßC1ºÍÇúÏßC2ÏཻÓÚA£¬BÁ½µã£¬Çó|AB|µÄÖµ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³Ì»¥»¯·½·¨£¬ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßC1ºÍÇúÏßC2ÏཻÓÚA£¬BÁ½µã£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¼´¿ÉÇó|AB|µÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉ$\left\{\begin{array}{l}x=cos¦Á\\ y=1+sin¦Á\end{array}\right.⇒\left\{\begin{array}{l}x=cos¦Á\\ y-1=sin¦Á\end{array}\right.⇒{x^2}+{£¨y-1£©^2}=1$¡­3·Ö
ÓÉ$¦Ñsin£¨¦È-\frac{¦Ð}{4}£©=\sqrt{2}⇒\frac{{\sqrt{2}}}{2}¦Ñsin¦È-\frac{{\sqrt{2}}}{2}¦Ñcos¦È=\sqrt{2}⇒y-x=2$
¼´C2£ºx-y+2=0£®¡­6·Ö
£¨¢ò£©¡ßÖ±Ïßx-y+2=0ÓëÔ²x2+£¨y-1£©2=1ÏཻÓÚA£¬BÁ½µã£¬
ÓÖx2+£¨y-1£©2=1µÄÔ²ÐÄ£¨0£¬1£©£¬Îª°ë¾¶Îª1£¬
¹ÊÔ²Ðĵ½Ö±ÏߵľàÀë$d=\frac{|0-1+2|}{{\sqrt{{1^2}+{{£¨-1£©}^2}}}}=\frac{{\sqrt{2}}}{2}$£¬
¡à$|AB|=2\sqrt{{1^2}-{{£¨\frac{{\sqrt{2}}}{2}£©}^2}}=\sqrt{2}$£®¡­10·Ö£®

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄ»¥»¥»¯£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬¶àÃæÌåABCDEFÖУ¬ÒÑÖªABCDÊDZ߳¤Îª3µÄÕý·½ÐΣ¬¡÷FBCÖÐBC±ßÉϵĸßΪFH£¬EF¡ÍFH£¬EF¡ÎAB£¬
£¨1£©ÇóÖ¤£ºÆ½ÃæFBC¡ÍÆ½ÃæABCD£»
£¨2£©ÈôFH=2£¬EF=$\frac{3}{2}$£¬Çó¸Ã¶àÃæÌåµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÃüÌ⣺¡°?x¡ÊR£¬x2-ax+1£¼0¡±µÄ·ñ¶¨Îª?x¡ÊR£¬x2-ax+1¡Ý0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚʵÊý¼¯RÉÏµÄÆæº¯Êý£¬Èôx£¾0ʱ£¬f£¨x£©=x•ex£¬Ôò²»µÈʽf£¨x£©£¾3xµÄ½â¼¯Îª£¨¡¡¡¡£©
A£®{x|-ln3£¼x£¼ln3}B£®{x|x£¼-ln3£¬»òx£¾ln3}
C£®{x|-ln3£¼x£¼0£¬»òx£¾ln3}D£®{x|x£¼-ln3£¬»ò0£¼x£¼ln3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£®£¬ÇÒ${S_n}={n^2}-2n$£®
£¨¢ñ£©Çó{an}ͨÏʽ£»
£¨¢ò£©Éè${b_n}=n•{2^{{a_n}+1}}$£¬ÇóÊýÁÐ{bn}ǰnÏîµÄºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®º¯Êýf£¨x£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽ¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=x+sinxB£®f£¨x£©=$\frac{cosx}{x}$C£®f£¨x£©=x£¨x-$\frac{¦Ð}{2}$£©£¨x-$\frac{3¦Ð}{2}$£©D£®f£¨x£©=xcosx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÉèiÊÇÐéÊýµ¥Î»£¬¸´Êýi£¨1+ai£©Îª´¿ÐéÊý£¬ÔòʵÊýaΪ£¨¡¡¡¡£©
A£®-1B£®0C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®º¯Êýf£¨x£©=lnx-£¨k+1£©x£¨k¡Ý-1£©£®
£¨1£©Èôf£¨x£©ÎÞÁãµã£¬ÇókµÄÈ¡ÕûÊýʱµÄ×îСֵ£»
£¨2£©Èô´æÔÚx¡Ê[2e£¬3e]ʹµÃf£¨x£©£¾0£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Å×ÎïÏßx2=4yµÄ½¹µãµ½×¼ÏߵľàÀëΪ£¨¡¡¡¡£©
A£®1B£®2C£®4D£®8

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸