精英家教网 > 高中数学 > 题目详情
14.已知二次函数f(x)=2x2+ax+b为偶函数,且图象经过点(1,-3)
(1)求f(x)的解析式,
(2)若f(x)≥3x+4,求该不等式的解集.

分析 (1)根据二次函数f(x)=2x2+ax+b为偶函数,且图象经过点(1,-3),求出a,b的值,可得f(x)的解析式,
(2)若f(x)≥3x+4,则2x2-3x-9≥0,解得答案.

解答 解:(1)∵二次函数f(x)=2x2+ax+b为偶函数,
∴f(-x)=f(x),
即2x2-ax+b=2x2+ax+b恒成立,
解得:a=0,
又∵函数图象经过点(1,-3)
∴2+b=-3,
解得:b=-5,
∴f(x)=2x2-5;
(2)f(x)≥3x+4,
故2x2-3x-9≥0,
解得:x∈(-∞,-$\frac{3}{2}$]∪[3,+∞).

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设数列{an}的前n项和为Sn若S2=4,an+1=1+2Sn,n∈N*,则S5=121.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC的内角A,B,C所对的边分别为a,b,c,若sinA=$\frac{1}{3}$,b=$\sqrt{3}$sinB,则a=$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)是定义在R上的奇函数,且在(-∞,0]上满足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且f(1)=0,则使得$\frac{f(x)}{x}$<0的x的取值范围是(  )
A.(-∞,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在区间(0,+∞)内单调递减的是(  )
A.y=$\frac{1}{x-1}$B.y=2xC.y=log2xD.y=-x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,满足Sn=-n2+7n(n∈N*).则数列{an}的通项公式是an=-2n+8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=f(x)的图象与g(x)=lnx的图象关于直线y=x对称,则f(x)=ex

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.写出函数y=-(x-1)2单调增区间(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-x+c
(1)求f(x)在[0,1]的最大值和最小值;
(2)求证:对任意x1,x2∈[0,1],总有|f(x1)-f(x2)|≤$\frac{1}{4}$;
(3)若函数y=f(x)在区间[0,2]上有2个零点,求实数c的取值范围.

查看答案和解析>>

同步练习册答案