精英家教网 > 高中数学 > 题目详情
2.若函数f(x)是定义在R上的奇函数,且在(-∞,0]上满足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且f(1)=0,则使得$\frac{f(x)}{x}$<0的x的取值范围是(  )
A.(-∞,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,1)

分析 由题意可得奇函数f(x)在(-∞,0]上单调递减,f(1)=0,f(-1)=0,可得函数f(x)的单调性示意图,数形结合求得使$\frac{f(x)}{x}$<0的x的取值范围.

解答 解:函数f(x)是定义在R上的奇函数,
且在(-∞,0]上满足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
故函数f(x)在(-∞,0]上单调递减.
∵f(1)=0,∴f(-1)=0,
故函数f(x)的单调性示意图,如图所示:
则由 $\frac{f(x)}{x}$<0,可得$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$ ②.
解①求得x>1,解②求得x<-1,
故不等式的解集为{x|x>1,或 x<-1},
故选:B.

点评 本题主要考查函数的单调性和奇偶性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=x2-2ax+5(a>1).
(Ⅰ)若f(x)的定义域和值域均是[1,a],求实数a的值;
(Ⅱ)若f(x)在区间(-∞,2]上是减函数,求f(x)在区间[1,a+1]上的最小值和最大值;
(Ⅲ) 若f(x)在区间(1,3)上有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等腰三角形ABC中,AB=4,AC=BC=3,点E,F分别位于两腰上,E,F将△ABC分成周长相等的三角形与四边形,面积分别为S1,S2,则$\frac{S_1}{S_2}$的最大值为$\frac{25}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若不等式(x-a)?(x+a)=(1-x+a)(1+x+a)=(1+a)2-x2<1对任意实数x成立,则(  )
A.-1<a<1B.-2<a<0C.0<a<2D.-$\frac{3}{2}$<α<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{2^x},x<1\\ f(x-1),x≥1\end{array}$则f(log23)的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且满足条件b2+c2-a2=bc=1,cosBcosC=-$\frac{1}{8}$,则△ABC的周长为$\sqrt{2}$+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=2x2+ax+b为偶函数,且图象经过点(1,-3)
(1)求f(x)的解析式,
(2)若f(x)≥3x+4,求该不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=tan2x的定义域为{x|x≠$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围(  )
A.k≤-3或-1≤k≤1或k≥3B.不存在这样的实数k
C.-2<k<2D.-3<k<-1或1<k<3

查看答案和解析>>

同步练习册答案