精英家教网 > 高中数学 > 题目详情
已知△ABC的周长为
2
+1,且sinA+sinB=
2
sinC.若△ABC的面积为
1
6
sinC,则角C的大小为(  )
A、30°B、60°
C、90°D、120°
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:已知等式利用正弦定理化简,得到a+b=
2
c,根据三角形周长求出c的值,进而确定出a+b的值,利用三角形面积公式表示出三角形ABC面积,将已知面积代入求出ab的值,最后利用余弦定理表示出cosC,将各自的值代入求出cosC的值,即可确定出C的度数.
解答: 解:将sinA+sinB=
2
sinC利用正弦定理化简得:a+b=
2
c,
∵a+b+c=
2
+1,
2
c+c=
2
+1,即c=1,
∴a+b=
2

∵S△ABC=
1
2
absinC=
1
6
sinC,
∴ab=
1
3

∵cosC=
a2+b2-c2
2ab
=
a2+b2-1
2ab
=
(a+b)2-2ab-1
2ab
=
2-
2
3
-1
2
3
=
1
2

则C=60°.
故选:B.
点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l的方程
x=
3
+
2
2
t
y=2-
2
2
t.
(t为参数),以原点O为极点,Ox轴为极轴,取相同的单位长度,建立极坐标系,曲线C的方程为ρ=2
3
cosθ,
(I) 求曲线C的直角坐标方程;
(Ⅱ)设曲线C与直线l交于A、B两点,若P(
3
,2)
,求|PA|+|PB|和|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是正数,且ab=a+b+3,则ab的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上不同的三个点,且A,B的连线经过坐标原点,若直线PA、PB的斜率的乘积kPA•kPB=
1
3
,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|1-
1
x
|(x>0),当0<a<b,若f(a)=f(b)时,则有(  )
A、ab>1
B、ab≥1
C、ab≥
1
2
D、ab>
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知数列{an}的通项公式an=n2-(6+2λ)n+2014,若a6或a7为数列{an}的最小项,则实数λ的取值范围(  )
A、(3,4)
B、[2,5]
C、[3,4]
D、[
5
2
9
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z=(a2+2a-3)+(a-l)i为纯虚数(i为虚数单位),则实数a的值为(  )
A、-3B、-3或1
C、3或-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为(  )
A、3B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数g(x)及二次函数h(x)满足:g(x)+2g(-x)=ex+
2
ex
-9,h(-2)=h(0)=1
且h(-3)=-2.
(Ⅰ)求g(x)和h(x)的解析式;
(Ⅱ)对于x1,x2∈[-1,1],均有h(x1)+ax1+5≥g(x2)-x2g(x2)成立,求a的取值范围;
(Ⅲ)设f(x)=
g(x),(x>0)
h(x),(x≤0)
,讨论方程f[f(x)]=2的解的个数情况.

查看答案和解析>>

同步练习册答案