精英家教网 > 高中数学 > 题目详情

设向量,函数.
(1)求函数的单调递增区间;
(2)求使不等式成立的的取值集合.

(1);(2)

解析试题分析:(1)本题用向量给出条件,因此首先我们把求出来,利用向量的数量积运算,可得,然后我们三角函数化为的形式,再利用正弦函数的性质解题,在变形过程中,注意使.在都大于0的情况下,
的单调增区间只要解不等式即得.(2)不等式是一个三角不等式,因,同样只要利用余弦函数的性质即可.
试题解析:(1) 

.     5′
,得
的单调递增区间为.     8′
(2)由,得.
,得,则
. ∴使不等式成立的的取值集合为.  14′
考点:(1)向量的数量积与三角函数的单调性;(2)复合函数的导数与余弦函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,c是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是
(1)求函数的解析式及其单调增区间;
(2)在△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为2,周期为
(1)确定函数的解析式,并由此求出函数的单调增区间;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1)求函数的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的最大值为6.
(Ⅰ)求
(Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.
(I)若,求边c的值;
(II)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(Ⅰ)若,求的值;
(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.
(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;
(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数;
(3)求该商店月利润的最大值.(定义运算

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若的值域;
(Ⅱ)△ABC中,角A,B,C的对边为a,b,c,若的值.

查看答案和解析>>

同步练习册答案