精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
在数列{an}中,a1=1,an=n2[1+++…+] (n≥2,n∈N)
(1)当n≥2时,求证:=
(2)求证:(1+)(1+)…(1+)<4

(1)利用
得到
(2)当时,

 
验证,当时, ,综上所述,对任意,不等式都成立.

解析试题分析:(1)当时, ……………………1分
所以…………………4分
 …………………………………………………………5分
(2)当时,……6分
……8分
……10分
 ………………………11分
时, ……………………………………………………………12分
综上所述,对任意,不等式都成立.……………………………………13分
考点:本题主要考查数列“裂项相消法”求和,“放缩法”证明不等式。
点评:中档题,涉及数列的不等式证明问题,往往需要先求和、再证明。本题(2)利用“裂项相消法”求得“数列的和”,利用放缩法,达到证明目的。易错忽视n=1的验证。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}是首项a1=4,公比q≠1的等比数列,Sn是其前n项和,且成等差数列.
(1)求公比q的值;
(2)求Tn=a2+a4+a6+…+a2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}(n∈N*)中,已知a1=1,a2k=-aka2k-1=(-1)k+1akk∈N*. 记数列{an}的前n项和为Sn.
(1)求S5S7的值;
(2)求证:对任意n∈N*,Sn≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列的前项和为,满足.
(1)求证:数列为等比数列;
(2)若数列满足为数列的前项和,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知数列的前 n项和为,满足,且.
(Ⅰ)求
(Ⅱ)若,求证:数列是等比数列。
(Ⅲ)若 , 求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知数列满足
(1)设,证明:数列为等差数列,并求数列的通项公式;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列中,,数列满足
(1)求证:数列是等差数列;
(2)求数列中的最大项和最小项,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知二次函数同时满足:①不等式的解集有且只有一个元素;②在定义域内存在,使得不等式成立.
设数列的前项和
(1)求数列的通项公式;
(2)数列中,令,求
(3)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数。令为正整数),求数列的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:数列的前项和为,且满足.
(Ⅰ)求:的值;
(Ⅱ)求:数列的通项公式;
(Ⅲ)若数列的前项和为,且满足,求数列
项和.

查看答案和解析>>

同步练习册答案