精英家教网 > 高中数学 > 题目详情
4.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的长轴长为$2\sqrt{2}$,离心率$e=\frac{{\sqrt{2}}}{2}$,过右焦点F的直线l交椭圆于P,Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当直线l的斜率为1时,求△POQ的面积;
(Ⅲ)若以OP,OQ为邻边的平行四边形是矩形,求满足该条件的直线l的方程.

分析 (Ⅰ)由题意可得2a=$2\sqrt{2}$,e=$\frac{{\sqrt{2}}}{2}$,从而解出椭圆方程$\frac{x^2}{2}+{y^2}=1$;
(Ⅱ)设直线l的方程为y=x-1,从而联立方程$\left\{\begin{array}{l}{x^2}+2{y^2}=2\\ y=x-1\end{array}\right.$,从而解出交点坐标,从而求面积;
(Ⅲ)分类讨论是否与x轴垂直,从而解出直线l的方程.

解答 解:(Ⅰ)由已知,椭圆方程可设为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,
∵长轴长2a=$2\sqrt{2}$,离心率e=$\frac{{\sqrt{2}}}{2}$,
∴$b=c=1,a=\sqrt{2}$,
所求椭圆方程为$\frac{x^2}{2}+{y^2}=1$;
(Ⅱ)∵直线l过椭圆右焦点F(1,0),且斜率为1,
∴直线l的方程为y=x-1,
设P(x1,y1),Q(x2,y2),
由$\left\{\begin{array}{l}{x^2}+2{y^2}=2\\ y=x-1\end{array}\right.$得,
3y2+2y-1=0,
解得${y_1}=-1,{y_2}=\frac{1}{3}$,
∴${S_{△POQ}}=\frac{1}{2}|OF|•|{y_1}-{y_2}|=\frac{1}{2}|{y_1}-{y_2}|=\frac{2}{3}$.
(Ⅲ)①当直线l与x轴垂直时,直线l的方程为x=1,
此时∠POQ小于90°,OP,OQ为邻边的平行四边形不可能是矩形.
②当直线l与x轴不垂直时,设直线l的方程为y=k(x-1).
由$\left\{\begin{array}{l}{x^2}+2{y^2}=2\\ y=k(x-1)\end{array}\right.$可得(1+2k2)x2-4k2x+2k2-2=0.
因为△=16k4-4(1+2k2)(2k2-2)=8(k2+1)>0,
所以${x_1}+{x_2}=\frac{{4{k^2}}}{{1+2{k^2}}},{x_1}{x_2}=\frac{{2{k^2}-2}}{{1+2{k^2}}}$.
因为y1=k(x1-1),y2=k(x2-1),
所以${y_1}{y_2}=\frac{{-{k^2}}}{{1+2{k^2}}}$.
因为以OP,OQ为邻边的平行四边形是矩形,
所以kOP•kOQ=-1,
因为$\frac{y_1}{x_1}•\frac{y_2}{x_2}=-1$,
所以x1x2+y1y2=$\frac{{2{k^2}-2}}{{1+2{k^2}}}+\frac{{-{k^2}}}{{1+2{k^2}}}=0$得k2=2.
所以$k=±\sqrt{2}$.
所以所求直线的方程为$y=±\sqrt{2}(x-1)$.

点评 本题考查了圆锥曲线与直线的位置关系应用,同时考查了分类讨论的思想与学生的化简运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知sin(5π-θ)+sin($\frac{5π}{2}$-θ)=$\frac{\sqrt{7}}{2}$.求:
(1)sin3($\frac{π}{2}$+θ)-cos3($\frac{3π}{2}$-θ);
(2)sin4($\frac{π}{2}$-θ)+cos4($\frac{7π}{2}$+θ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式x2-x>0的解集是(  )
A.(1,+∞)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=sinx-cos(x+\frac{π}{6}),x∈[0,π]$的值域是(  )
A.$[-2,\sqrt{3}]$B.$[-\frac{{\sqrt{3}}}{2},1]$C.$[-\sqrt{3},\sqrt{3}]$D.$[-\frac{{\sqrt{3}}}{2},\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A(-3,0),B(0,4),M是圆C:(x-2)2+y2=1上一个动点,则△MAB的面积的最小值为(  )
A.4B.5C.7.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在(-∞,0)上为减函数的是(  )
A.$y={x^{\frac{2016}{2015}}}$B.$y={x^{\frac{2013}{2015}}}$C.$y={x^{-\frac{2014}{2015}}}$D.$y={x^{-\frac{2015}{2016}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.高一年级某同学用“五点法”画函数$y=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$在一个周期内的图象时,列表并填入部分数据,如表:
x$\frac{π}{4}$$\frac{3π}{4}$$\frac{5π}{4}$
ωx+φ0$\frac{π}{2}$$\frac{3π}{2}$
f(x)02-20
(1)请将上面表格中的数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线l将圆x2+y2-2x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是(  )
A.x-y+1=0,2x-y=0B.x-y-1=0,x-2y=0C.x+y+1=0,2x+y=0D.x-y+1=0,x+2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设命题p:有的三角形是等边三角形;命题q:每一个四边形的四顶点共圆.则下列复合命题是真命题的是(  )
A.p∧¬qB.¬p∧qC.p∧qD.¬p∨q

查看答案和解析>>

同步练习册答案