精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga
1-mx
x-1
(a>0,a≠1,m≠1)是奇函数,
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:(1)由已知条件得f(-x)+f(x)=0对定义域中的x均成立,化简即m2x2-1=x2-1对定义域中的x均成立,解出m,并代入题目进行检验.
(2)将对数的真数进行常数分离,先判断真数的单调性,再根据底数的范围确定整个对数式得单调性.
解答: 解:(1)由题意得f(x)+f(-x)对定义域中的x均成立,
∴loga
1-mx
x-1
+loga
mx+1
-x+1
=0,即
1-mx
x-1
mx+1
-x+1
=1,
即m2x2-1=x2-1,
解得m=-1,或m=1(舍去),
(2)由(1)得f(x)=loga
1+x
x-1

设t=
x+1
x-1
=1+
2
x-1

当x1>x2>1时,当t1-t2=
2
x1-1
-
2
x2-1
=
2(x2-x1)
(x1-1)(x2-1)
>0,
当a>1时,logat1<logat2,即f(x1)<f(x2).
所以当a>1时,f(x)在(1,+∞)上是减函数.
同理当0<a<1时,f(x)在(1,+∞)上是增函数
点评:本题主要考查函数奇偶性的应用,以及对数的图象和性质,利用奇偶性的对应建立方程是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(-3,1),
b
=(3,λ),若
a
b
,则λ的值为(  )
A、-9B、-1C、1D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,函数y=f(x)的图象在点P处的切线方程是y=kx+b,若f(1)-f′(1)=2,则b=(  )
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

若(2x-1)6=a0+a1x+a2x2+…+a6x6,求;
(1)a0
(2)a0+a1+a2+…+a6
(3)a0+a2+a4+a6

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)>0,f(1)=1.
(1)判断f(x)的单调性,并证明;
(2)当-3≤x≤3时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=lnx-ax.
(1)若a=2,求函数f(x)的单调区间;
(2)若函数f(x)≤0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半圆O的直径AB=2,C在BA的延长线上且AC=1,P为半圆上异于A、B的一点,设∠POC=θ.
(1)设PB2+PC2=f(θ),求f(θ)的解析式;
(2)以PC为边作正方形PCMN,求五边形OCMNP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+lnx
(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(x))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-
1
2
的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得f′(x1)+f′(x2)+f′(x3)+…f′(xk)≥2013成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠∅,A∩C=∅,求m的值.

查看答案和解析>>

同步练习册答案