精英家教网 > 高中数学 > 题目详情
如图,函数y=f(x)的图象在点P处的切线方程是y=kx+b,若f(1)-f′(1)=2,则b=(  )
A、-1B、1C、2D、-2
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:由图象可得P为切点,则由导数的几何意义可知f′(1)=k,又f(1)=k+b,即可得到b的值.
解答: 解:由于函数y=f(x)的图象在点P处的切线方程是y=kx+b,
且P(1,f(1)),
则f(1)=k+b,f′(1)=k,
由f(1)-f′(1)=2,得b=2,
故选C.
点评:本题考查导数的几何意义:曲线在该点处的切线的斜率,考查基本的运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B,C.若
AB
=
1
2
BC
,则双曲线的渐近线方程为(  )
A、3x±y=0
B、x±3y=0
C、2x±y=0
D、x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,
BC
+
CD
-
AD
等于(  )
A、
BA
B、
BD
C、
AC
D、
AB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
AB
=(4,2),
AC
=(3,4),则△ABC的面积为(  )
A、5B、7.5C、10D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人不相邻且不排在两端,不同的排法共有(  )
A、720种B、960种
C、1440种D、480种

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为2的正三角形ABC中,设
AB
=
a
BC
=
b
CA
=
c
,则
a
b
+
b
c
+
c
a
等于(  )
A、12B、-12C、6D、-6

查看答案和解析>>

科目:高中数学 来源: 题型:

要从A、B、C、D、E、F这6人中选出4人参加4×100m的接力赛;
(1)不同的参赛方式有几种;
(2)若A、B均参加且A必须跑第一棒,不同的参赛方式有几种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
1-mx
x-1
(a>0,a≠1,m≠1)是奇函数,
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,哈三中甲,乙两位同学分别站在新校区体育场内的A,B两点,利用三角函数知识测量锅炉房烟囱CD的高.已知AB=15米,∠DAC=60°,∠CAB=15°,∠CBA=45°,求烟囱CD的高.

查看答案和解析>>

同步练习册答案